
Diss. ETH No. 24894

Selected Topics in
Secure Multi-Party Computation

A thesis submitted to attain the degree of

Doctor of Sciences of ETH Zurich
(Dr. sc. ETH Zurich)

presented by

Daniel Tschudi
MSc ETH Mathematics, ETH Zurich

born on 15 May 1988
citizen of Glarus GL, and Zürich ZH, Switzerland

accepted on the recommendation of

Prof. Dr. Ueli Maurer, examiner
Dr. Martin Hirt, co-examiner

Prof. Dr. Jesper Buus Nielsen, co-examiner

2018

Acknowledgments

First of all, I would like to thank my advisor Ueli Maurer for giving me
the opportunity to do a PhD in his group and explore the fascinating
world of cryptography. His abstract perspective on cryptography lead to
many interesting discussions.

I owe a great debt of gratitude to Martin Hirt. He always had time
for me and taught me in endless, but enlightening discussions how to
transform cool ideas into presentable results. His support and patience
were a great help in reaching this point. I would also like to thank him
for organizing the applied geometry seminar1.

Sincere thanks go to Jesper Buus Nielsen for kindly agreeing to serve
as a co-examiner on my committee.

I thank all my collaborators on projects both in and outside the scope
of this thesis – Christian Badertscher, Juan Garay, Chen-Da Liu Zhang,
Julian Loss, Marta Mularczyk, Martin Raszyk, and Vassilis Zikas. In
particular, I would like to thank Vassilis for his advice on writing papers.

Special thanks go to my long-term office mates Chen-Da Liu Zhang
and Sandro Coretti, who had to endure me and were great partners for
discussing research and all kinds of other things. I am also grateful to all
the other former and current members of the Information Security and
Cryptography Group at ETH that have been my colleagues: Peter Gaži,
Maria Dubovitskaya, Björn Tackmann, Pavel Raykov, Gian Pietro Farina,
Robert Enderlein, Grégory Demay, Christian Matt, Daniel Jost, Gregor
Seiler, Christopher Portmann, and Fabio Banfi.

I would also like to thank our group and department secretaries Beate
Bernhard, Claudia Günthart, and Denise Spicher for helping with all the

1a.k.a. the pool billiards sessions over lunch

iv ACKNOWLEDGMENTS

administrative tasks.
Doing a PhD can be harsh at times. I would therefore thank my

parents Edith and Thomas, and my brothers Christian and Lukas, for
their support during such times—and all other times as well.

Abstract

Secure multi-party computation (MPC) allows a set of n parties to evaluate
a function f in the presence of an adversary who corrupts a subset of the
parties. In this work we investigate three selected topics in the area of
MPC.

Most MPC protocols require that parties are pair-wise connected by
means of secure channels. To run an MPC over an incomplete network,
secure message transfer protocols (SMTP) can be used. However, classic
SMTP leaks information about the topology of the underlying network.
In the first part of this thesis, we present the first topology-hiding com-
munication protocol for incomplete networks which makes black-box use
of the underlying cryptographic assumptions. The protocol tolerates
any adversary who passively corrupts arbitrarily many network nodes.
This protocol allows to make any MPC protocol with passive security
topology-hiding. We further show how to construct anonymous broadcast
without using expensive MPC to setup the original pseudonyms.

Broadcast channels are an important primitive used in many MPC
protocols. It is well-known that broadcast channels can be achieved
with perfect security if and only if the fraction of active cheaters is less
than a third. A natural question initially raised by Lamport, is whether
there are weaker, still useful primitives achievable from authenticated
channels. In the second part of the thesis we investigate generalizations
of the broadcast setting in two directions: weaker forms of consistency
guarantees are considered, and other resources than merely bilateral
channels are assumed to be available. The ultimate goal of this line of
work is to arrive at a complete classification of consistency specifications.

In the third part of the thesis, we consider active, general adversaries
which are characterized by a so-called adversary structure Z. The ad-

vi ABSTRACT

versary structure enumerates all possible subsets of corrupted parties.
Protocols for general adversaries are “efficient” in the sense that they
require |Z|O(1) bits of communication. However, as |Z| is usually very
large (even exponential in n), the exact exponent is very relevant. For the
setting with perfect security we present a protocol which requires O(|Z|2)
bits of communication. For the setting with statistical security we present
a protocol which requires O(|Z|) bits of communication. Both protocols
have a better communication complexity than previous protocols.

Zusammenfassung

Sichere Mehrspielerberechnung (MSB) erlaubt n Parteien eine Funktion
f in Präsenz eines Gegner, der eine Teilmenge der Parteien korrumpiert,
sicher zu berechnen. In dieser Arbeit untersuchen wir drei ausgesuchte
Themenbereiche im Gebiet der MSB.

Die meisten MSB-Protokolle erfordern, dass die Parteien paarweise
durch sichere Kanäle verbunden sind. Zur Durchführung einer MSB über
einem unvollständigen Netzwerk können sichere Nachrichtenübertragungs-
protokolle (SNÜP) verwendet werden. Klassische SNÜP geben jedoch
Informationen über die Topologie des zugrunde liegenden Netzwerks preis.

Im ersten Teil dieser Dissertation wird das erste Topologie-verbergende
SNÜP für unvollständige Netzwerke vorgestellt, das die zugrundeliegen-
den kryptographischen Annahmen in “Blackbox” umsetzt. Das Protokoll
toleriert Gegner, die beliebig viele Netzwerkknoten passiv korrumpieren
können. Dieses Protokoll ermöglicht es, jedes passiv sichere MSB-Protokoll
auch Topologie-verbergend zu machen. Zusätzlich wird gezeigt, wie an-
onymer Rundfunk konstruiert werden kann, ohne dass teure MSB für die
Einrichtung der Pseudonyme verwendet werden muss.

Rundfunkkanäle sind ein wichtiges Grundelement, das in vielen MSB-
Protokollen verwendet wird. Es ist wohlbekannt, dass Rundfunkkanäle
genau dann konstruiert werden können, wenn der Anteil an aktiven Be-
trügern weniger als ein Drittel beträgt. Eine natürliche Frage, die zuerst
von Lamport aufgeworfen wurde, ist, ob es schwächere, aber noch immer
nützliche Primitiven gibt, die aus authentifizierten Kanälen erreichbar
sind. Im zweiten Teil der Dissertation werden zwei Richtungen zur Ver-
allgemeinerungen dieses Unmöglichkeitsresultats untersucht: Schwächere
Formen von Konsistenzgarantien werden betrachtet und andere Ressour-

viii ZUSAMMENFASSUNG

cen als nur bilaterale Kanäle werden als verfügbar vorausgesetzt. Das
ultimative Ziel in dieser Fragestellung ist, eine vollständige Klassifizierung
der Konsistenzspezifikationen zu erreichen.

Im dritten Teil der Dissertation werden aktive Allgemeingegner be-
trachtet, die durch eine sogenannte Gegnerstruktur Z gekennzeichnet sind.
Die Gegnerstruktur zählt alle möglichen Mengen korrumpierter Parteien
auf. Protokolle für Allgemeingegner sind “effizient” in dem Sinne, dass sie
|Z|O(1) Bits Kommunikation benötigen. Da |Z| normalerweise sehr gross
ist (sogar exponentiell in n), ist der exakte Exponent äusserst relevant.
Für perfekte Sicherheit wird ein Protokoll präsentiert, das O(|Z|2) Bits
Kommunikation benötigt. Für statistische Sicherheit wird ein Protokoll
präsentiert, das O(|Z|) Bits Kommunikation benötigt. Beide Protokolle ha-
ben eine bessere Kommunikationkomplexität als alle bisherigen Protokolle.

Contents

Acknowledgments iii

Abstract v

Zusammenfassung vii

Contents ix

1 Introduction 1
1.1 Secure Multi-Party Computation 2

1.1.1 Multi-Party Computation Models 2
1.1.2 History of MPC 4

1.2 Contributions . 4
1.2.1 Topology-Hiding Communication 4
1.2.2 Classification of Consistency Specification 5
1.2.3 Efficient General Adversary MPC 6

2 Preliminaries 9
2.1 General Notation . 9
2.2 Cryptographic Primitives 10

2.2.1 Broadcast Channel 10
2.2.2 Public-Key Encryption 10
2.2.3 Threshold Public-Key Encryption 11

2.3 Hardness Assumptions . 12
2.3.1 Decisional Diffie-Hellman Assumption 12

x CONTENTS

3 Topology-Hiding Communication 13
3.1 Introduction . 13

3.1.1 Related Literature 14
3.1.2 Contributions . 16
3.1.3 Comparison with [MOR15] 19
3.1.4 Preliminaries and Notation 21
3.1.5 Outline . 21

3.2 Topology-Hiding Security Definition 22
3.3 MHT-PKE with Reversible Randomization 25

3.3.1 Multi-Homomorphic Threshold Encryption 26
3.3.2 Reversible Randomization 29
3.3.3 RR-MHT-PKE based on DDH 31

3.4 Topology-Hiding Communication 35
3.4.1 Topology-Hiding Threshold Encryption 36
3.4.2 Multi-Party Boolean OR 47
3.4.3 Topology-Hiding Broadcast 48

3.5 Applications . 49
3.5.1 Topology-Hiding Secure MPC 49
3.5.2 Anonymous Broadcast 50

4 Classes of Consistency Specifications 55
4.1 Introduction . 55

4.1.1 Contribution and Outline 56
4.1.2 Related Work . 57

4.2 Preliminaries . 59
4.2.1 Consistency Specifications 59
4.2.2 Protocols and Constructions 61

4.3 Impossibility Proofs . 64
4.3.1 Broadcast Impossibility 65
4.3.2 Strong Broadcast Impossibility 66

4.4 Classification of Specifications 69
4.4.1 Classification of Single-Input Specifications 70

4.5 Strong Separation Results 77
4.5.1 XOR-Cast . 77
4.5.2 Weak Broadcast 80

4.6 Discussion and Open Problems 82

CONTENTS xi

5 Efficient General-Adversary MPC 83
5.1 Introduction . 83

5.1.1 Contributions . 84
5.2 Preliminaries . 85
5.3 Perfect Protocol . 86

5.3.1 Secret Sharing . 86
5.3.2 Multiplication . 89
5.3.3 MPC Protocol . 92

5.4 Unconditional Protocol . 93
5.4.1 Information Checking 93
5.4.2 Unconditional Secret Sharing 96
5.4.3 Multiplication . 100
5.4.4 Unconditional MPC Protocol 103

5.5 Unconditional Protocol for Superpoly |Z| 105
5.5.1 Information Checking 105
5.5.2 Broadcast . 106
5.5.3 Summary . 107

5.6 Lower Bound on the Efficiency 108

Bibliography 109

Curriculum Vitae 119

Chapter 1

Introduction

Alice, Bob, Charlie and Eve want to listen to some music. Bob
suggests that everyone discloses their favorite artists such that
they can choose music which is fine for everyone. However,
from past experience Charlie and Eve both distrust each other
claiming that the other person will for sure ridicule them for
their music taste. Unfortunately, their friend Trent whom they
all trust is sick and not there to help and choose the music
for them. Alice, eager to listen to some music, interrupts the
ensuing discussion and starts with “Have you ever heard of
MPC?”

The above problem of choosing music is a special case of private set
intersection. Private set intersection is one of a large class of problems
where a set of mutually distrusting parties would like to do a joint
computation. If a trusted third-party is available such problems can
be solved by outsourcing the computation to the trusted party. If no
trusted party is available the problems can be solved using a secure multi-
party computation (MPC) protocol. More generally, MPC protocols
enable the parties to emulate a trusted party which can do an arbitrary
computation on the parties’ (secret) inputs.

There are many MPC problems known in the literature. In Chaum’s
spymaster problem two spymasters want to learn the names of double
agents, i.e. agents which work for both spy agencies. For obvious reasons,

2 CHAPTER 1. INTRODUCTION

both spymasters are reluctant to give the other the list of all their agents.
In Yao’s millionaires problem, two millionaires want to determine who is
richer without revealing anything else about their fortunes. In both cases
MPC allows to compute the desired information without revealing any
other information.

More common applications of MPC include online auctions, e-voting
or the protection of customer data.

1.1 Secure Multi-Party Computation
In this section we give a short introduction to secure multi-party compu-
tation and provide an overview of the different models used. For a more
detailed introduction see, e.g, [CDN15].

1.1.1 Multi-Party Computation Models
Parties and Computation. In the secure multi-party computation
problem a set of n parties P = {P1, ..., Pn} (also known as players or
processors) wants to compute a function f over some finite field F. The
function is normally specified by a circuit C consisting of input, output,
random, addition, and multiplication gates. In an ideal world, a trusted
party does all the computation. In the real world, parties emulate the
trusted party by using some MPC protocol Π.

Communication Model. The parties are connected over a network
of pairwise channels. Additionally parties may have access to broadcast
channels. A broadcast channel allows a party (the sender) to consistently
distribute a message among all other parties. The network (topology) of
channels can be complete or incomplete.

The assumed (broadcast) channels can be insecure, authentic, or even
secret (authentic and private).

In this work we assume a synchronous communication model, where
all channels have a known and constant upper-bound on the delay and
parties have a common clock. This allows for round-based protocols.

Adversary Model. Dishonesty is modeled in terms of a central adver-
sary A who corrupts parties. There are three different corruption models:

1.1. SECURE MULTI-PARTY COMPUTATION 3

During the execution of the protocol passively or semi-honestly corrupted
parties follow protocol instructions but the adversary can access their
internal state. A fail-stop corrupted party follows the protocol instruc-
tions until the adversary decided to crash it; from then on the party
does no longer participate in the protocol. In particular, it does not send
out messages to parties. The adversary can access the internal state of
actively corrupted parties and make them deviate from the protocol at
will. Parties which are not corrupted are called honest.

Often, a threshold adversary is assumed which is characterized by an
upper bound t on the number of corrupted parties. Threshold adversaries
are a special case of general adversaries. The corruption choice of a
general adversary is limited by means of an adversary structure Z =
{Z1, . . . , Z`} ⊆ 2P , i.e., the set Z∗ of corrupted parties must be an
element of Z.

A static adversary must specify the set of corrupted parties before the
protocol execution. In contrast, an adaptive adversary can corrupt parties
during the protocol execution.

Finally, we distinguish between computationally unbounded and com-
putationally bounded adversaries.

Security Model. We say a protocol is secure if anything the adversary
achieves during the execution of the protocol can as well be achieved
in the ideal world where a trusted party does the computation. We
distinguish between information-theoretic and cryptographic security. In
information-theoretic security we require that for every adversary in the
real world there exists an adversary in the ideal world such that both
the information the adversary gets and the output of honest parties are
identically distributed for perfect security respectively statistically close for
unconditional security. In cryptographic security the indistinguishability
between the real-world and the ideal-world relays on assumed the bounded
computing power of the distinguisher and the (assumed) hardness of some
computational problems.

Efficiency of MPC. There are different measures for the protocol com-
plexity. First, we denote by the round complexity the (maximal) number
of rounds the protocol requires. Next, we denote by the communication
complexity the number of bits sent or received by honest parties. For

4 CHAPTER 1. INTRODUCTION

the communication complexity we only consider messages which should
have been received according to the protocol description. The commu-
nication complexity can be split into the communication complexity for
normal channels and the broadcast complexity which measures the num-
ber of broadcast bit. Sometimes, one also considers the computational
complexity of the (local) computation of an honest party.

1.1.2 History of MPC
MPC was introduced by Yao [Yao82]. A first solution (with computational
security) was given by Goldreich, Micali, and Wigderson [GMW87]. Later
solutions [BGW88, CCD88, RB89] provide statistical and even perfect
security. All these protocols consider threshold adversaries This was
generalized in [HM00] by considering general adversaries.

In the setting with perfect active security, MPC is achievable if and
only if t < n

3 , respectively Q
3(P,Z) (the union of no three sets in Z covers

P). In the setting with statistical or cryptographic active security, MPC
is achievable if and only if t < n

2 , respectively Q
2(P,Z) (the union of no

two sets in Z covers P) if given broadcast.

1.2 Contributions
The contributions of this thesis comprise a protocol for topology-hiding
communication [HMTZ16], a classification of consistency specifications
[LMT16, LMT17] and an efficient protocol for general adversary MPC
[HT13].

1.2.1 Topology-Hiding Communication
In MPC it is commonly assumed that parties are connected over a complete
network of channels. If the network has an incomplete topology, one can
use secure message transmission (SMT) to build pairwise secure channels
between parties and thus complete the network. Since the introduction
of SMT in [DDWY90] the problem has been widely studied under the
aspect of different settings and security requirements (see for example
[SNR04, FFGV07, KS08]).

1.2. CONTRIBUTIONS 5

However, in those work the topology of the underlying communication
network is not treated as private data. In fact, SMT protocols require
that parties have knowledge of the network topology. The problem
of topology-hiding secure multi-party computation over an incomplete
network was introduced in [MOR15]. In this work a proof-of-concept
network-hiding communication protocol is given for the computational
setting (i.e., assuming secure public-key encryption) tolerating a passive
(semi-honest) and static adversary. At a very high level, [MOR15] uses
public-key encryption and (passive) multi-party computation to topology-
hidingly emulate a communication network. This network is then used to
execute an arbitrary multi-party protocol in which parties communicate
over a complete communication network.

In Chapter 3 we present the first topology-hiding communication
protocol for incomplete networks which makes black-box use of the under-
lying cryptographic assumption—in particular, a public-key encryption
scheme—and tolerates any adversary who passively corrupts arbitrarily
many network nodes. Our solution is based on a new, enhanced variant
of threshold homomorphic encryption, in short, TH-PKE, that requires
no a-priori setup and allows to circulate an encrypted message over any
(unknown) incomplete network and then decrypt it without revealing any
network information to intermediate nodes. We show how to realize this
enhanced TH-PKE from the DDH assumption. The black-box nature of
our scheme, along with some optimization tricks that we employ, makes
our communication protocol more efficient than previous solutions.

We then use our communication protocol to make any passively se-
cure MPC protocol topology-hiding with a reasonable—i.e., for simple
networks, polynomial with small constants—communication and compu-
tation overhead. We further show how to construct anonymous broadcast
without using expensive MPCs to setup the original pseudonyms.

1.2.2 Classification of Consistency Specification
A classical problem in MPC is to construct a broadcast channel from
authenticated channels allowing a sender to send a value consistently to
all (honest) receivers. Lamport showed in [Lam83] that this is possible to
perfectly construct authenticated broadcast if and only if the fraction of
dishonest parties is less than a third.

A natural question, first raised by Lamport, is whether there are

6 CHAPTER 1. INTRODUCTION

weaker, still useful primitives achievable from authenticated channels. He
proposed weak broadcast, where the validity condition must hold only if all
parties are honest, and showed that it can be achieved with an unbounded
number of protocol rounds, while broadcast cannot, suggesting that weak
broadcast is in a certain sense weaker than broadcast.

In Chapter 4 we deepen the investigation of the separation between
broadcast and authenticated channels. To this end, we use consistency
specifications [Mau04] to model the guarantees primitives such as broad-
cast provide for the outputs of honest parties.

First, we consider a generalized version of so called “scenario”-proofs
(see, e.g., [FLM85]). This allows us to prove a stronger impossibility result
for three-party broadcast. Namely, even if two of the parties can broadcast,
one cannot construct authenticated broadcast for the third party. Next,
we present a complete classification of three-party specifications with
a binary input and two binary outputs. Finally, we prove a strong
separation between authenticated channels and broadcast by exhibiting
a new primitive, called XOR-cast, which satisfies two conditions: (1)
XOR-cast is strongly unrealizable (even with small error probability) from
authenticated channels (which is not true for weak broadcast), and (2)
broadcast is strongly unrealizable from XOR-cast (and authenticated
channels). This demonstrates that the hierarchy of three-party primitives
has a more complex structure than previously known.

1.2.3 Efficient General Adversary MPC

In MPC one normally considers threshold adversaries which can corrupt
up to t parties. An alternative are general adversaries, characterized by a
so-called adversary structure Z which enumerates all possible subsets of
corrupted parties. In particular for small sets of parties general adversaries
better capture real-world requirements than classical threshold adversaries.

In Chapter 5 we consider the efficiency of secure MPC against active
general adversaries. Protocols for general adversaries are “efficient” in the
sense that they require |Z|O(1) bits of communication. However, as |Z|
is usually very large (even exponential in n), the exact exponent is very
relevant. In the setting with perfect security, the most efficient protocol
previously known communicates O(|Z|3) bits; we present a protocol
for this setting which communicates O(|Z|2) bits. In the setting with

1.2. CONTRIBUTIONS 7

statistical security, O(|Z|3) bits of communication is needed in general
(whereas for a very restricted subclass of adversary structures, a protocol
with communication O(|Z|2) bits is known); we present a protocol for
this setting (without limitations) which communicates O(|Z|1) bits.

Chapter 2

Preliminaries

In this chapter we introduce some general notation and provide the
definition of some fundamental cryptographic primitives and hardness
assumptions.

2.1 General Notation
We denote by P = {P1, ..., Pn} a set of n parties. For convenience, we
will sometimes write i instead of Pi. We distinguish between the subset
of honest parties H ⊆ P and the dishonest parties in the complement
H := P \H. The (central) adversary is denoted by A.

Throughout this work, the security parameter is denoted κ. We write
negl(κ) to refer to a negligible function of κ. (See [Gol01] for a formal
definition of negligible functions.)

For an algorithm A we write (y1, . . . , yk) ← A(x1, . . . , xk) to denote
that (y1, . . . , yk) are outputs of A given inputs (x1, . . . , xk). For a proba-
bilistic algorithm B we write (y1, . . . , yk) ← B(x1, . . . , xk; r) where r is
the chosen randomness. If we write (y1, . . . , yk) � B(x1, . . . , xk) instead,
we assume that the randomness has been chosen uniformly.

Finally, we denote by N = {0, 1, 2, 3, . . .} the set of natural numbers.
For any n ∈ N we write [n] for the set {1, . . . , n}. Moreover, F denotes an
arbitrary finite field. For a set of values V and a index-set I, we denote
by M I the Cartesian product×i∈IM . A tuple ~vI ∈ V I contains for each

10 CHAPTER 2. PRELIMINARIES

index i ∈ I value ~vi. We denote by ~vI|I′ ∈M I′ the projection of ~vI ∈M I

to entries in I ′ ⊆ I, i.e, the tuple ~vI|I′ ∈M I′ contains exactly the values
of ~vI ∈M I for index set I ′.

2.2 Cryptographic Primitives
2.2.1 Broadcast Channel
A broadcast channel BCs allows the sender Ps to distribute a message m
among the parties in P such that:

Consistency: All honest parties output the same message m′.

Validity: If the sender Ps is honest, then all honest parties output
m′ = m.

More generally, one can define broadcast channels BCs,R where the
sender’s message is only guaranteed to be output to the recipient set
R ⊆ P. However, in this work the recipient set is generally assumed to
be the whole party set P.

2.2.2 Public-Key Encryption
A public-key encryption (PKE) scheme with public-key space PK, secret-
key space SK, message spaceM, and ciphertext space C is defined as three
algorithms (KeyGen,Enc,Dec) all parameterized by security parameter κ
where:

1. The (probabilistic) key-generation algorithm KeyGen outputs a pub-
lic key pk ∈ PK and a secret key sk ∈ SK.

2. The (probabilistic) encryption algorithm Enc takes a public key
pk ∈ PK and a message m ∈ M and outputs a ciphertext c ←
Enc(pk,m; r).

3. The decryption algorithm Dec takes a secret key sk ∈ SK and a
ciphertext c ∈ C and outputs message m← Dec(sk, c).

A PKE scheme is correct if for any key pair (pk, sk)← KeyGen and
any message m ∈M it holds (with probability 1 over the randomness of
Enc) that m = Dec(sk,Enc(pk,m; r)).

2.2. CRYPTOGRAPHIC PRIMITIVES 11

Chosen-Plaintext Security. Indistinguishability under chosen-plain-
text attacks (IND-CPA) considers an adversary trying to decide which
of two messages of his choice is encrypted in a given ciphertext. More
formally, a PKE scheme is IND-CPA secure if an (efficient) adversary has
not a non-negligible advantage in winning the following game.

1. The game generates a key pair (pk, sk) ← KeyGen and chooses a
random bit b. Then the games sends pk to the adversary (this allows
him to generate encryptions of arbitrary messages).

2. The adversary sends two messages m0 and m1 of the same length
and the game returns c = Enc(pk,mb).

3. The adversary sends a bit b′. If b = b′ the adversary has won the
game.

2.2.3 Threshold Public-Key Encryption
A (`, `)-threshold public-key encryption (T-PKE) scheme with public-key
space PK, secret-key space SK, message spaceM, and ciphertext space
C is defined as four algorithms TKeyGen, Enc, ShareDecrypt, Decode all
parameterized by security parameter κ and the threshold ` where:

1. The (probabilistic) key-generation algorithm TKeyGen outputs a
public key pk ∈ PK and a secret key sk which consists of a vector
of sub-keys ski ∈ SK, i.e., sk = (sk1, . . . , sk`).

2. The (probabilistic) encryption algorithm Enc takes a public key
pk ∈ PK and a message m ∈ M and outputs a ciphertext c ←
Enc(pk,m; r).

3. The decryption-share algorithm ShareDecrypt takes a sub-key ski ∈
SK, and a ciphertext c ∈ C as inputs and outputs a decryption
share xi ← ShareDecrypt(ski, c).

4. The decoding algorithm Decode takes decryption shares x1, . . . , x` ∈
DS and a ciphertext c ∈ C as inputs and outputs a message m←
Decode(x1, . . . , x`, c).

12 CHAPTER 2. PRELIMINARIES

A T-PKE scheme is correct if for any key pair pk, sk = (sk1, . . . , sk`)
generated using KeyGen and any messagem ∈M it holds (with probability
1 over the randomness of Enc) that m = Decode(x1, . . . , x`, c) where
xi = ShareDecrypt(ski, c) and c = Enc(pk,m; r).

Remark. More generally, one can define a (t, `)-threshold public-key
encryption scheme where the secret key consists of ` key shares. To
efficiently decrypt a ciphertext at least t out of the ` key shares are
required.

2.3 Hardness Assumptions
2.3.1 Decisional Diffie-Hellman Assumption
Let 〈G, ·〉 be a cyclic group of prime order q and let g be a generator of
G. The decisional Diffie–Hellman (DDH) problem for G is the problem
of distinguishing for given group elements (α, β, γ) whether they are
independent uniform random in G or whether α = ga and β = gb are
independent uniform random and γ = gab.

The DDH assumption holds in G if it is computationally hard to solve
the DDH problem in G.

Chapter 3

Topology-Hiding
Communication

The content of this chapter is based on [HMTZ16].

3.1 Introduction
Secure communication is perhaps the central goal of cryptography. It
allows a sender, Alice, to securely transmit a message to a receiver, Bob, so
that even if some eavesdropper, Eve, is intercepting their communication
she cannot figure out anything about the transmitted message. When
Alice and Bob share a physical (but potentially tappable) communication
channel, this task can be easily carried out by use of standard public-key
cryptography techniques, e.g., Bob sends to Alice his public key who uses
it to encrypt her message and send it over the physical communication
channel to Bob. But this idealized scenario occurs rarely in modern
networks, such as the Internet, where Alice and Bob would most likely
not share a physical channel and would, instead, have to communicate
over some (potentially incomplete) network of routers. Without further
restrictions, the above modification marginally complicates the problem
as it can be directly solved by means of a private flooding scheme. In
such a scheme, Alice encrypts her message, as before, and sends it to
all her immediate neighbors, i.e., network routers with which she shares

14 CHAPTER 3. TOPOLOGY-HIDING COMMUNICATION

physical links, who then forward it to their immediate neighbors, and
so on, until it reaches Bob. Clearly, if Alice has a path to Bob and the
forwarding step is repeated as many times as the length of this path, the
message will reach Bob. And the fact that the intermediate routers only
see encryptions of the transmitted message means that they do not learn
anything about the message.

But modern distributed protocols often require much more than just
privacy of the transmitted message. For example, ensuring anonymity
in communication is a major goal of security as it, for example, protects
against censorship or coercion. Similarly, as privacy awareness in social
networks increases, users might not be willing to reveal information about
the structure of their peer graph (i.e., their Facebook friends graph)
to outsiders. Other applications might require to hide a communicat-
ing agent’s location, as is the case in espionage or when using mobile
agents to propagate information through some ad-hoc network, e.g., in
vehicle-to-vehicle communication. All these applications require a routing
scheme, that hides the topology of the underlying communication network.
Evidently, using the simple private flooding strategy does not hide the
topology of the underlying communication network as, for example, an
eavesdropping router can easily determine its distance (and direction) to
the sender by observing in which round (and from whom) it receives the
first encryption.

3.1.1 Related Literature
The problem of routing through an incomplete network has received a
lot of attention in communication networks with a vast amount of works
aiming at optimizing communication complexity in various network types.
In the following, however, we focus on the cryptographic literature which is
more relevant to our goals—namely network hiding communication—and
treatment.

Perhaps the main venue of work in which keeping the network hidden
is a concern is the literature on anonymous communication, e.g., [Cha03,
RR98, SGR97]. These works aim to hide the identity of the sender and
receiver in a message transmission, in a way that protects these identi-
ties even against traffic analysis. In a different line of work initiated by
Chaum [Cha81], so called mix servers are used as proxies which shuffle
messages sent between various peers to disable an eavesdropper from

3.1. INTRODUCTION 15

following a message’s path. This technique has been extensively studied
and is the basis of several practical anonymization tools. An instance of
the mix technique is the so called onion routing [SGR97, RR98], which
is perhaps the most wide-spread anonymization technique. Roughly,
it consists of the sender applying multiple encryptions in layers on his
message, which are then “peeled-off” as the cipher-text travels through
a network of onion routers towards its destination. An alternative
anonymity technique by Chaum [Cha88] and implemented in various in-
stances (e.g.,[Bd90, GJ04, GGOR14]) is known as Dining Cryptographers
networks, in short DC-nets. Here, the parties themselves are responsible
for ensuring anonymity.

The question of hiding the communication network was also recently
addressed in the context of secure multi-party computation by Chandran
et al. [CCG+15]. This work aims at allowing n parties to compute an
arbitrary given function in the presence of an adaptive adversary, where
each party communicates with a small (sublinear in the total number of
parties) number of its neighbors. Towards this goal, [CCG+15] assumes
that parties are secretly given a set of neighbors that they can communicate
with. Because the adversary is adaptive, it is crucial in their protocol that
the communication does not reveal much information about the network
topology, as such information would allow the adversary to potentially
discover the neighbors of some honest party, corrupt them, and isolate this
party, thereby breaking its security. Another work which considers such an
adaptive corruption setting is the work of King and Saia [KS10], which is
tailored to the Byzantine agreement problem. We note in passing that the
result of [CCG+15, KS10] was preceded by several works which considered
the problem of MPC over incomplete networks. However, these works do
not aim to keep the network hidden as they either only consider a static
adversary, 1 e.g., [BGT13], and/or they only achieve so called almost
everywhere computation [GO08, KSSV06a, KSSV06b, CGO15] where the
adversary is allowed to isolate a small number of honest parties.

In our work we improve the recent work of Moran, Orlov, and Richel-
son [MOR15], which considers the problem of topology-hiding secure
multi-party computation over an incomplete network in the computational
setting (i.e., assuming secure public-key encryption) tolerating a passive

1Learning the network topology through the communication cannot help a static
adversary to isolate any honest party as the set of corrupted parties is fixed before the
execution of the protocol.

16 CHAPTER 3. TOPOLOGY-HIDING COMMUNICATION

(semi-honest) and static adversary. At a very high level, [MOR15] uses
public-key encryption and (passive) multi-party computation to implement
a proof-of-concept network-hiding communication protocol, which emu-
lates a complete network of secure channels. This emulated network is then
used to execute an arbitrary multi-party protocol in which parties commu-
nicate over a complete communication network, e.g., [GMW87, Pas04]. In
fact, as noted in [MOR15], relying on a computational assumption seems
inevitable, as in the information-theoretic setting the work of Hinkel-
mann and Jakoby [HJ07] excludes fully topology-hiding communication.2
As [MOR15] was the starting point for our work, we include a detailed
comparison of our results with [MOR15] in Section 3.1.3.

3.1.2 Contributions
In this work we present the first network-hiding communication protocol
which makes black-box use of public-key encryption and, for networks
with reasonable degree and diameter, has a moderate communication and
computation complexity. Our protocol allows the parties to communicate
over an incomplete network of point-to-point channels in a way which
computationally hides both the transmitted message and the neighbor-
hood of honest parties from an adversary passively corrupting arbitrary
many parties. We remark that as pointed out in [CCG+15], when the
communication graph is to be kept hidden, the adversary cannot be
eavesdropping on communication channels, and in particular cannot be
informed when a message is transmitted over some channel. We resolve
this issue by assuming, along the lines of [MOR15], a special network
functionality (cf. Section 3.2).

A bit more concretely, the high-level idea of our construction is to
enhance the naïve private flooding-protocol by using homomorphic public-
key encryption (in short, PKE). The starting point of our approach
is the observation—underlying also the construction from [MOR15]—
that the flooding protocol would be topology-hiding if the parties could
not read intermediate messages. But instead of using, as in [MOR15],
expensive nested MPCs for ensuring this fact (see below for a high-

2To our understanding the result of [HJ07] does not apply to the case where a
strong information-theoretic setup, e.g., sufficiently long correlated randomness, is
available to the parties. Extending this results to that setting is an interesting open
problem.

3.1. INTRODUCTION 17

level description of [MOR15]) we use a version of threshold PKE with
additional homomorphic properties. We also show how to implement our
enhanced threshold PKE definition assuming hardness of the Decisional
Diffie-Hellmann (DDH) problem.

To demonstrate our ideas, imagine there was a world in which parties
(corresponding to all intermediate routers) could encrypt with a homo-
morphic public-key encryption scheme where the private (decryption)
key is known to nobody, but instead parties have access to a decryption
oracle. Provided that the associated PKE-scheme is semantically secure,
parties can enhance the flooding protocol as follows: Alice encrypts its
message and starts the flooding; in each step of the flooding protocol, the
intermediate party—which, recall, is supposed to forward the received
ciphertext—first re-randomizes the ciphertext and then forwards it. Once
the message arrives to Bob, he invokes the decryption oracle to open
its final ciphertext. We observe that in this case the adversary does no
longer learn anything from intermediate messages, the protocol is thus
topology-hiding.

There are two major challenges with the above approach. First, if
intermediate parties are silent until a message reaches them during the
flooding, then the adversary observing this fact can use it to deduce
information about the network. E.g., if a neighbor Pi of a corrupted party
has not sent anything by the second round of the flooding protocol, then
the adversary can deduce that Pi is not a neighbor of Alice. Secondly,
we need a way to implement the decryption oracle. Observe that using
an off-the-shelf threshold decryption scheme and have decryption shares
exchanged by means of flooding would trivially destroy the topology-hiding
property; and the same is the case if we would use an MPC protocol for
this purpose, unless the MPC were itself topology-hiding. In the following
we discuss how we solve each of the protocols, separately.

The first issue—information leakage from silent parties—can be solved
by having every party send messages in every round. As simple as this
idea might seem, it has several difficulties. For starters, the messages
that are injected by intermediary parties should be indistinguishable from
encryptions, as otherwise adding this noise makes no difference. But now,
there is a new issue that the intermediate parties cannot tell which of the
indistinguishable messages they receive contains the initial message sent
by Alice. The naive solution to this would be to have parties re-randomize
everything they receive and add their own noise-message. But this would

18 CHAPTER 3. TOPOLOGY-HIDING COMMUNICATION

impose an exponential, in the graph diameter, factor both in the message
and communication complexity. Our solution, instead, is to use the
homomorphic properties of the encryption scheme and build an efficient
process which allows every party to compute an encryption of the OR of
the messages it receives from its neighbors. Thus, to transfer a bit b, Alice
encrypts b and starts flooding, whereas every party encrypts a zero-bit
and starts flooding simultaneously. In each following round of the flooding
scheme, every party homomorphically computes the OR of the messages
it receives and continues flooding with only this encryption. Bob keeps
computing the OR of the encryptions he receives, and once sufficiently
many rounds have passed, the decryption is invoked to have him obtain
Alice’s bit. Note that we only treat the case of passively-corrupted parties
here, thus no party will input an encryption of a one-bit into this smart
flooding scheme which would destroy its correctness.

To solve the second issue—i.e., implement the decryption oracle in
a topology-hidingly manner—we introduce a new variant of threshold
homomorphic public-key encryption (TH-PKE) with enhanced functional-
ity, which we call multi-homomorphic threshold encryption with reversible
randomization. Roughly speaking, our new TH-PKE assumes a strongly
correlated setup, in which secret (sub)keys are nested in a way which is
consistent with the network topology and which allows parties to decrypt
messages in a topology-hiding manner. We provide a security definition for
the new primitive and describe a topology-hiding protocol for establishing
the necessary setup using no setup-assumption whatsoever. And we also
describe how to instantiate our schemes under the DDH assumptions. We
believe that both the general definition of this augmented TH-PKE and
the concrete instantiation could be of independent interest and can be
used for anonymizing communication.

Applications Building on our topology-hiding network and utilizing
the functionality of our topology-hiding homomorphic OR protocol we
present the following applications:

Anonymous broadcast: We consider a variant of anonymous broadcast
where parties can broadcast messages under a pseudonym. The
presented protocol allows to realize anonymous broadcast directly
from the topology-hiding homomorphic OR protocol without using
expensive MPC to setup the pseudonyms.

3.1. INTRODUCTION 19

Topology-hiding MPC: Having a topology-hiding network, we can
execute on top of it any MPC protocol from the literature that is
designed for point-to-point channels which will render it topology-
hiding.

3.1.3 Comparison with [MOR15]

The work by Moran et al. [MOR15] provides the first protocol that solves
this problem in the computational setting. Our goals are closely related to
theirs. In fact, our security definition of topology-hiding communication
and, more general, computation is a refinement of their simulation-based
definition of topology-hiding MPC. But our techniques are very different.
In light of this similarity in goals, in the following we include a more
detailed comparison to our work.

More concretely, the solution of [MOR15] also follows the approach
of enhancing the naïve flooding protocol to make it topology-hiding.
The key idea is to use nested MPCs, recursively, to protect sensitive
information during the execution of the flooding protocol. Roughly, in the
basic topology-hiding communication protocol of [MOR15], each party
Pi is replaced by a virtual-party P̂i, which is emulated by its immediate
neighbors by invoking locally (i.e., in the neighborhood) an off-the-shelf
MPC protocol. The complete network of point-to-point channels required
by the MPC protocol is emulated by use of a PKE-scheme over the star
network centered around Pi, i.e., by naïve flooding where Pi is used as the
routing node. The above ensures that Pi cannot analyze the messages that
are routed through him, as they are actually handled by its corresponding
virtual party P̂i. However, there is now a new problem to be solved, namely,
how do virtual parties use the underlying (incomplete) communication
network to flood messages in a topology-hidingly manner? This is solved as
follows: To enable secure communication between adjacent virtual-parties
a PKE-scheme is used (once more). Here each virtual-party generates a
key-pair and sends the encryption key to the adjacent virtual-parties using
real parties as intermediates. This basic protocol is topology-hidingly
secure as long as the adversary does not corrupt an entire neighborhood.
But this is of course not enough for arbitrarily many corruptions to
be tolerated. Thus, to ensure that the overall flooding protocol is also
topology-hiding, each virtual party is replaced, again by means of MPC,

20 CHAPTER 3. TOPOLOGY-HIDING COMMUNICATION

by a “doubly virtual” party ˆ̂
P . This will ensure that only adversaries

corrupting all the parties that emulate ˆ̂
P can break the topology-hiding

property. To extend the set of tolerable adversaries, the doubly virtual
parties are again emulated, and this process is continued until we reach
an emulated party that is emulated by all parties in the network. This
requires a number of nested MPCs in the order of the network diameter.

In the following we provide a comparison of the solution of [MOR15]
with ours, demonstrating the advantages of our solution both in terms of
simplicity and efficiency. In all fairness, we should remark that the solution
of [MOR15] was explicitly proposed as a proof-of-concept solution. The
major advantage of our work over [MOR15] is that our communication
protocol makes no use of generic MPC, and makes black-box use of the
underlying PKE. This not only yields a substantial efficiency improvement,
in terms of both communication and computation, but it also yields a
more intuitive solution to the problem, as it uses the natural primitive to
make communication private, namely encryption, instead of MPC.

More concretely, the player-virtualization protocol from [MOR15]
makes non-black-box use of public-key encryption, i.e., the circuit which is
computed via MPC is a public-key encryption/decryption circuit. This is
typically a huge circuit which imposes an unrealistic slowdown both on the
computation complexity and on the round and/or communication com-
plexity.3 And this is just at the first level of recursion; the computation
of the second level, computes a circuit, which computes the circuit, which
computes PK encryptions/decryptions, and so on. Due to the lack of con-
crete suggestions of instantiation of the PKE and MPC used in [MOR15]
we were unable to compute exact estimates on the running time and
communication complexity of the suggested protocols. Notwithstanding
it should be clear that even for the simple case in which the network has
constant degree and logarithmic diameter—for which the communication
protocol in [MOR15] achieves a polynomial complexity—and even for the
best MPC instantiation the actual constants are huge.

Instead, our solution makes black-box use of the underlying PKE
scheme and is, therefore, not only more communication and computation
efficient, but also easier to analyze. In fact, in our results we include con-
crete upper bounds on the communication complexity of all our protocols.

3Of course the latter can be traded off by choosing to use either a communication
heavy or a round heavy protocol.

3.1. INTRODUCTION 21

Indicatively, for a network with diameter D and maximum degree d our
network-hiding broadcast protocol communicates at most (d+ 1)D · n · λ
bits within just 5 ·D rounds, where λ is linear (with small constant, less
than 5)4 in the security parameter κ of the underlying PKE scheme. We
note that many natural network graphs, such as social networks or the
internet have a small diameter.5

3.1.4 Preliminaries and Notation
We consider an MPC-like setting where n parties P = {P1, . . . , Pn}
wish to communicate in a synchronous manner over some incomplete
network of secure channels. When the communication is intended to
be from Pi, the sender, to Pj , the receiver, we will refer to the parties
in P \ {Pi, Pj} as the intermediate parties. We will assume a passive
and static (aka non-adaptive) computationally-bounded adversary who
corrupts an arbitrary subset H ⊆ P of parties. We use simulation based
security to prove our results. For simplicity our proofs are in Canetti’s
modular composition framework [Can98] but all our results translate
immediately to the universal composition UC framework [Can01] (recall
that we consider passive (semi-honest) static security). In fact, to make
this transition smoother, we describe our hybrids in the form of UC
functionalities. For compactness, for any functionalities F and G, we will
denote by {F ,G} the composite functionality that gives parallel access to
F and G.

3.1.5 Outline
The remainder of the chapter is organized as follows. In Section 3.2 we
give our definition of topology-hiding security. In Section 3.3 we introduce
multi-homomorphic threshold encryption with reversible randomization
(RR-MHT-PKE). In Section 3.4 we present a construction based on
RR-MHT-PKE which allows to realize topology-hiding communication.
First, in Section 3.4.1 we describe a topology-hiding threshold encryption
protocol based on RR-MHT-PKE. This protocol is used in Section 3.4.2

4This can be contrasted with the complexity poly(d)D · n · λ obtained by [MOR15].
5Backstrom et al. [UKBM11] showed that a sub-graph of the Facebook social

network consisting of 99.6% of all users had a diameter of 6. In this particular case
the broadcast protocol would communicate at most n7 · λ bits within 30 rounds.

22 CHAPTER 3. TOPOLOGY-HIDING COMMUNICATION

to topology-hidingly realize the Boolean-OR functionality. This allows
to give a topology-hiding construction of broadcast and secure channels
in Section 3.4.3. Finally, in Section 3.5 we present topology-hiding MPC
and topology-hiding anonymous broadcast as applications of the protocols
from the previous section.

3.2 Topology-Hiding Security Definition
In this section we provide the formal simulation-based definition of
topology-hiding computation. Our definition is an adaptation of the
original simulation-based definition of Moran et al. [MOR15]. More
concretely, the topology-hiding property requires that parties learn no
information on the underlying communication network other than the de-
scription of their local neighborhood, i.e., the identities of their neighbors.
To capture this property, we assume that the parties (in the real world)
have access to a network functionality N which has knowledge of every
party Pi’s neighborhood (i.e., the set of point-to-point channels connected
to Pi) and allows Pi to communicate (only) to its neighbors.

Clearly, a protocol execution over such a network N allows an adver-
sary using it knowledge of the neighborhood of corrupted parties; thus
the simulator needs to also be able to provide this information to its
environment. To give this power to the simulator, [MOR15] augments the
ideal functionality with an extra component which allows the simulator
access to this information. In this work we use N itself in the ideal world
to provide this information to the simulator. Note that this does not affect
the security statements, as the trivial N -dummy protocol φN securely
realizes N . 6

A conceptual point in which our model of topology-hiding computation
deviates from the formulation of Moran et al. has to do with respect to
how the communication graph is chosen. At first thought, one might think
that parameterizing the network functionality with the communication
graph does the trick. This is, however, not the case because the parameters
of hybrid-functionalities are known to the protocol which invokes them
and are therefore also known to the adversary. The only information

6In any case, our protocol will not output anything other than the output of the
functionality, hence the simulator will only use N to learn the corrupted parties
neighborhood.

3.2. TOPOLOGY-HIDING SECURITY DEFINITION 23

which is not known to the adversary are inputs of honest parties and
internal randomness of the functionality; thus, as a second attempt, one
might try to have the network functionality sample the communication
graph from a given distribution.7 Unfortunately this also fails to capture
the topology-hiding property in full, as we would like to make sure that
the adversary (or simulator) gets no information on any given (hidden)
graph.

Motivated by the above, [MOR15] defines topology-hiding computa-
tion using the following trick: they assume an extra incorruptible party,
whose only role is to provide the network graph as input to the network
functionality. Because this network-choosing party is (by assumption)
honest, the simulator cannot see its input and needs to work having only
the knowledge that N allows him to obtain, i.e., the neighborhood of
corrupted parties.

In this work we take a slightly different, but equivalent in its effect,
approach to avoid the above hack of including a special purpose honest
party. We assume that each party provides its desired neighborhood to
N as (a special part of) its input. Since the inputs are explicitly chosen
by the environment, we are effectively achieving the same topology-hiding
property as [MOR15] but without the extra special-purpose honest party.

In the remainder of this section we provide a formal specification of
our network functionality (also referred to as network resource) and our
formal security definition of topology-hiding computation.

The Network The network topology is captured by means of an undi-
rected graph G = (V,E) with vertex-set V = P and edge-set E ⊆ P × P.
An edge (Pi, Pj) ∈ E indicates that Pj is in the neighborhood of Pi, which,
intuitively, means that Pi and Pj can communicate over a bilateral secure
channel. For a party Pi denote by NG(i) its neighborhood in G. We will
refer to NG[i] = {Pi} ∪NG(i) as Pi’s closed neighborhood. Furthermore
let NG[i]k be all nodes in G which have distance k or less to Pi (Clearly
Pi ∈ NG[i]k.). This set of nodes NG[i]k is called the k-neighborhood of
Pi.

The network functionality allows two types of access: (1) any party
Pi ∈ P can submit its neighbors NG[i], and (2) every party can submit
a vector ~m of messages, one for each of its neighbors, which are then

7Intuitively, this would correspond to the hidden graph model of [CCG+15].

24 CHAPTER 3. TOPOLOGY-HIDING COMMUNICATION

delivered in a batch form to their intended recipients. In order to be
able to make statements for restricted classes of graphs, e.g., expanders,
we parameterize the network functionality by a family G of setups and
require that NG only allows (the environment on behalf of) the honest
parties to chose their neighborhood from this class.

Note, that the adversary is not bound to choose a neighborhood
from a graph in G, i.e., any valid neighborhood is accepted for corrupted
parties. This is not an issue in the passive setting considered in this
work as a passive adversary will submit whatever input the environment
hands it. Thus, for the passive case it suffices that the functionality
becomes unavailable (halts) upon receiving an invalid neighborhood from
the adversary (or from some honest party). 8

In the description of NG we use the following notation: For a graph G
with vertex set V , and for any V ′ ⊆ V , we denote by G|V ′ the restriction
of G to the vertices in V ′, i.e., the graph that results by removing from
G all vertices in V \ V ′ and their associated edges.

The network initializes a topology graph G = (V,E) := (P, ∅).
Info Step:

1. Every party Pi ∈ P (and the adversary on behalf of corrupted
parties) sends (input) (MyNeigborhood,NG[i]) to N ; if NG[i]
is a valid neighborhood for Pi, i.e., NG[i] ⊆ {(Pi, Pj) | Pj ∈ P},
then NG updates E := E ∪NG[i].

2. If there exist no G′ ∈ G such that G′ = G then NG sets E := ∅
and halts. (Every future input is answered by outputting a special
symbol (BadNetwork) to the sender of this input.)

Communication Step:

1. For each Pi ∈ P let NG(i) = {Pi1 , . . . , Piνi }.
2. Every Pi ∈ P sends NG input (send, ~mi), where

~mi = (mi,i1 , . . . ,mi,iνi
); if Pi does not submit a vector ~mi of the

right size or format, then NG adopts ~mi = (⊥, . . . ,⊥).

Functionality NG

8Note that the environment knows/chooses all the inputs and therefore knows
whether or not the submitted neighborhoods are allowed by the graph class.

3.3. MHT-PKE WITH REVERSIBLE RANDOMIZATION 25

3. Every Pi receives (output) ~mi = (mi1,i, . . . ,miνi ,i
) from NG .

An important feature of the above functionality is that the commu-
nication pattern (i.e., which parties send or receive messages) does not
reveal to the adversary any information other than the neighborhood of
corrupted parties. Thus, the simulator cannot use this functionality in
the ideal world to extract information about the network. However, when
using this network-functionality (in the real-world protocol) to emulate,
e.g., a complete communication network, the adversary might use the mes-
sages exchanged in the protocol to extract information that the simulator
cannot. In fact, the challenge of a topology-hiding protocol is exactly to
ensure that the exchanged messages cannot be used by the adversary in
such a way.

Definition 1. Let G be a family of graphs with vertex set P. Let also F
be a functionality and NG denote the network functionality (as specified
above) and π be a NG-hybrid protocol. We say that πNG securely realizes the
functionality F in a topology-hiding manner with respect to network class
G if and only if π securely realizes the composite functionality {F,NG}.

3.3 Multi-Homomorphic Threshold Encryp-
tion with Reversible Randomization

In this section we introduce multi-homomorphic threshold encryption
with reversible randomization RR-MHT-PKE, a special type of threshold
public-key encryption, which will allow us to securely and topology-
hidingly realize a distributed encryption scheme. In addition to the
(common) homomorphic property of ciphertexts RR-MHT-PKE features
homomorphic public-keys and decryption-shares. This allows for a de-
centralized generation of shared keys which enables parties to generate
securely and topology-hidingly a public-key setup where the private-key
is shared among all parties. Its reversible randomization property allows
parties to transmit public-keys and/or ciphertexts through the network
such that the adversary can not track them. We also give a practical
implementation of RR-MHT-PKE based on the DDH assumption (see
Section 3.3.3).

26 CHAPTER 3. TOPOLOGY-HIDING COMMUNICATION

We first start by recalling some standard definitions. A public-key
encryption (PKE) scheme consists of three algorithms, KeyGen for key
generation, Enc for encryption and Dec for decryption. Since in this work
we consider passive adversaries, we will only need encryption satisfying the
standard IND-CPA security definition. For completeness this definition is
provided in Section 2.2.2.

Threshold public-key encryption (T-PKE) with (`, `)-threshold is PKE
in which the private key SK is distributed among ` parties P1, . . . , P`, such
that each party Pi holds a share (aka sub-key) ski of SK with the property
that any ` − 1 sub-keys have no information on SK. Importantly, such
a scheme allows for distributed decryption of any given ciphertext: any
party Pi can locally compute, using its own sub-key ski of the private key
SK, a decryption share xi, so that if someone gets a hold of decryption
shares (for the same c) from all parties (i.e., with each of the shares of
the private key) he can combine them and recover the plaintext. For the
classical definition of T-PKE we refer to Section 2.2.3.

Finally, a homomorphic threshold public-key encryption (HT-PKE)
scheme is a T-PKE which allows to add up encrypted messages. Here,
the message space 〈M,+〉 and the ciphertext space 〈C, ·〉 are groups such
that m1 + m2 = Dec(SK,Enc(PK,m1; r1) · Enc(PK,m2; r2)). for any key
pair (PK, SK)← KeyGen and any messages m1,m2 ∈M.

3.3.1 Multi-Homomorphic Threshold Encryption
We first present multi-homomorphic threshold encryption which is in
essence HT-PKE with two additional properties.

The first property is a decentralized key-generation. The idea is that
parties locally generate public/private-key pairs. By combining those local
public keys they can then generate a public key with shared private-key
where the local private keys act as key shares. More formally, its required
that the public-key space 〈PK, ·〉 and the private-key space 〈SK,+〉 are
groups. Moreover its is required (1) that there exists a key-generation
algorithm KeyGen, which outputs a public/private-key pair (pki, ski) ∈
PK×SK, and (2) that for any key pairs (pk1, sk1), (pk2, sk2) ∈ PK×SK
it holds that pk1 · pk2 is the public key corresponding to private key
sk1 + sk2. In other words a multi-homomorphic threshold encryption
scheme is homomorphic with respect to public/private keys. We point out
this is not a standard property of threshold PKE schemes. For instance,

3.3. MHT-PKE WITH REVERSIBLE RANDOMIZATION 27

the threshold variant [DJ01] of Paillier’s encryption scheme [Pai99] does
not satisfy this property.

Secondly, a multi-homomorphic threshold encryption scheme is re-
quired to be homomorphic with respect to decryption shares and private
keys. That is, for any key pairs (pk1, sk1), (pk2, sk2) and any cipher-
text c it must hold that ShareDecrypt(sk1, c) · ShareDecrypt(sk2, c) =
ShareDecrypt(sk1 + sk2, c).

Definition 2. A multi-homomorphic threshold encryption (MHT-PKE)
scheme with security parameter κ for spacesM, C, SK, and PK consists
of four algorithms KeyGen, Enc, ShareDecrypt, and Decode which are
parametrized by κ where:

1. The (probabilistic) key-generation algorithm KeyGen outputs a public
key pk ∈ PK and a private key sk ∈ SK.

2. Homomorphic keys: The public-key space 〈PK; ·〉 and the private-
key space 〈SK; +〉 are cyclic groups of prime order. For any key
pairs (pk1, sk1), (pk2, sk2) ∈ PK× SK it holds that pk1 · pk2 is the
public key corresponding to private key sk1 + sk2.

3. The (probabilistic) encryption algorithm Enc takes a public key
pk ∈ PK and a message m ∈ M and outputs a ciphertext c ←
Enc(pk,m; r).

4. Homomorphic ciphertexts: The message space 〈M; +〉 and the ci-
phertext space 〈C; ·〉 are cyclic groups of prime order. For any
public-key pk ∈ PK and any two messages m1,m2 ∈ M where
c1 ← Enc(pk,m1; r1) and c2 ← Enc(pk,m2; r2) it holds that c1 · c2
is an encryption of m1 +m2 under pk.

5. The decryption share algorithm ShareDecrypt takes a private key
ski ∈ SK and a ciphertext c ∈ C as inputs and outputs a decryption
share xi ← ShareDecrypt(ski, c).

6. Homomorphic decryption-shares: The decryption-share space 〈DS; ·〉
is a cyclic group of prime order. For ciphertext c ∈ C and private
keys sk1, sk2 ∈ SK where x1 ← ShareDecrypt(sk1, c) and x2 ←
ShareDecrypt(sk2, c) we have x1 · x2 = ShareDecrypt(sk1 + sk2, c).

28 CHAPTER 3. TOPOLOGY-HIDING COMMUNICATION

7. The decoding algorithm Decode takes a decryption share x ∈ DS
and a ciphertext c ∈ C and outputs a message m← Decode(x, c).

A MHT-PKE scheme is correct if it satisfies the following correctness
property: For any key pairs (pk1, sk1), . . . , (pkl, skl)← KeyGen and any
message m ∈ M it holds that m = Decode(x1 · . . . · xl, c) where xi =
ShareDecrypt(ski, c), c = Enc(pk,m; r) and pk = pk1 · . . . · pkl. We
assume, that the order of each of the above groups is publicly-known and
that the group operations are efficiently computable. Moreover, we require
that given a message m ∈ M and a ciphertext c ∈ C one can efficiently
invert Decode, i.e., compute a decryption share x with m = Decode(x, c).

We define the security of MHT-PKE with respect to a threshold variant
of the IND-CPA security definition.

Definition 3. A MHT-PKE scheme is IND-TCPA secure if the adver-
sary’s advantage in winning the following game is negligible in κ.

1. The game generates key pairs (pk1, sk1), . . . (pkl, skl) � KeyGen
and chooses a random bit b. Then the adversary gets pk = pk1 ·
. . . · pkl, pk1, . . . , pkl and sk2, . . . , skl. This allows him to generate
encryptions of arbitrary messages and to generate decryption shares
for all key pairs except (pk1, sk1).

2. The adversary specifies two messages m0 and m1 and the game
returns c = Enc(PK,mb).

3. The adversary specifies a bit b′. If b = b′ the adversary has won the
game.

Furthermore for any chosen public-key pk ∈ PK, it should be hard
to distinguish between (pk, pk · pk1) and (pk, pk2) where pk1, pk2 are dis-
tributed according to KeyGen. This is the case, if the output distribution
of KeyGen is indistinguishable from uniform.

Definition 4. A MHT-PKE scheme has the unif-KG property if the
output distribution of KeyGen is indistinguishable from the uniform distri-
bution.

3.3. MHT-PKE WITH REVERSIBLE RANDOMIZATION 29

3.3.2 Reversible Randomization

In this section we introduce multi-homomorphic threshold encryption
with reversible randomization which is MHT-PKE with additional ran-
domization properties for public-keys and ciphertexts.

Randomization of Public-Keys. The first property required is the
randomization of public-keys. More concretely, a MHT-PKE with re-
versible randomization allows a party Pi with public key pki to “randomize”
pki, i.e., compute a new masked public-key p̃ki so that anyone seeing p̃ki is
unable to tell whether it is a freshly generated public-key or a randomized
version of pki. Importantly, we require the randomization algorithm to
be reversible in the following sense. The randomization algorithm must
provide Pi with information rki, the de-randomizer, which allows it to
map any encryption with p̃ki back to an encryption with its original key
pki. Looking ahead, the randomization of public-keys property will ensure
that the adversary can not trace public keys while they travel the net-
work. This allows us to build a topology-hiding information-transmission
protocol.

Randomization of Ciphertexts. The second property required is
the randomization of ciphertexts. More concretely, a MHT-PKE with
reversible randomization allows a party Pi with ciphertext ci to “random-
ize” ci, i.e., compute a new masked ciphertext ĉi so that anyone seeing
ĉi is unable to tell whether it is a freshly generated ciphertext (using
an arbitrary public-key) or an randomized version of ci. Importantly,
we require the randomization algorithm to be reversible. This means it
must provide Pi with information rki, the de-randomizer, which allows
it to map any decryption share of ĉi and decryption key sk back to a
decryption share of the original ciphertext ci and sk. Looking ahead, the
randomization of ciphertexts will ensure that the adversary can not trace
ciphertexts and decryption-shares while they travel the network. This
will allow us to build a topology-hiding decryption protocol. We remark
that this property differs from the usual ciphertext re-randomization in
homomorphic PKE schemes where one randomizes a ciphertext by adding
up an encryption of 0.

30 CHAPTER 3. TOPOLOGY-HIDING COMMUNICATION

MHT-PKE with Reversible Randomization We can now give
the formal definition of multi-homomorphic threshold encryption with
reversible-randomization (RR-MHT-PKE).

Definition 5. A RR-MHT-PKE scheme is a MHT-PKE scheme with
four extra algorithms RandKey, DerandCipher, RandCipher, DerandShare
where:

1. The (probabilistic) (key) randomization algorithm RandKey takes a
public key pk ∈ PK and outputs a new public key p̃k ∈ PK and a
de-randomizer rk ∈ RKP .

2. The (ciphertext) de-randomization algorithm DerandCipher takes
a de-randomizer rk ∈ RKP and a ciphertext c̃ ∈ C and outputs a
new ciphertext c ∈ C such that the following property holds. For any
key pair (pk, sk), (p̃k, rk)← RandKey(pk; r′), any message m ∈M,
and any ciphertext c̃ ← Enc(p̃k,m; r̃) there exists an r such that
Enc(pk,m; r) = DerandCipher(rk, c̃). Moreover, given a ciphertext
c and a de-randomizer rk one can efficiently invert DerandCipher,
i.e., compute a ciphertext c̃ such that c = DerandCipher(rk, c̃).

3. The (probabilistic) (ciphertext) randomization algorithm RandCipher
takes a ciphertext c ∈ C and outputs a new ciphertext ĉ ∈ C and a
de-randomizer rk ∈ RKC .

4. The (share) de-randomization algorithm DerandShare takes a de-
randomizer rk ∈ RKC and a decryption share x̂ ∈ DS and out-
puts a share x ∈ DS such that the following property holds. For
any key pair (pk, sk), any ciphertext c ∈ C, the pair (rk, ĉ) ←
RandCipher(c; r), and decryption share x̂ ← ShareDecrypt(ski, ĉ)
we have that DerandShare(rk, x̂) = ShareDecrypt(ski, c). Moreover,
given a decryption share x and a de-randomizer rk one can effi-
ciently invert DerandShare, i.e., compute a decryption shares x̂ such
that x = DerandShare(rk, x̂).

For any public key pk it should be hard (for the adversary) to dis-
tinguish between (pk,RandKey(pk)) and (pk, pk′) where pk′ is freshly
generated using KeyGen. Similar, for any ciphertext c it should be hard
to distinguish between (c,RandCipher(c)) and (c, c′) where c′ is a ran-
domly chosen ciphertext. More formally, the scheme should have the

3.3. MHT-PKE WITH REVERSIBLE RANDOMIZATION 31

indistinguishability under chosen public-key and chosen ciphertext attack
(IND-CKCA) property.

Definition 6. A RR-MHT-PKE scheme is IND-CKCA secure if the
probability of the adversary winning the following game is negligible (in
κ) close to 3

4 .

1. The adversary specifies a public key pk ∈ PK and a ciphertext c ∈ C.

2. The game generates key pairs (pk1, sk1), (pk2, sk2) � KeyGen and
a uniform random message m ∈ M. The game then chooses uni-
form random bits b1 and b2. The adversary gets public key p̃k and
ciphertext ĉ where

p̃k =
{

RandKey(pk) if b1 = 0
pk1 if b1 = 1

and

ĉ =
{

RandCipher(c) if b2 = 0
Enc(pk2,m) if b2 = 1

.

3. The adversary specifies bits b′1 and b′2. If b1 = b′1 or b2 = b′2 the
adversary has won the game.

The security of a RR-MHT-PKE scheme is defined with respect to
the above security properties.

Definition 7. A multi-homomorphic threshold encryption with reversible-
randomization scheme is secure if it is IND-TCPA, and IND-CKCA
secure and has the unif-KG property.

3.3.3 RR-MHT-PKE based on DDH

In this section we present a secure RR-MHT-PKE scheme based on the
DDH assumption. Our construction can be seen as an extended variant
of the ElGamal cryptosystem [ElG84].

32 CHAPTER 3. TOPOLOGY-HIDING COMMUNICATION

MHT-PKE-Algorithms.

Let 〈G, ·〉 be a cyclic group of prime order q(κ) (where the bit length of q
is poly(κ)) for security parameter κ. Denote by eG the neutral element of
G and let g be a generator of G. For our scheme we assume that (G, q, g)
is publicly known. To ensure the various homomorphic properties we
use G as message space, public key space, decryption share space, i.e.,
M = PK = DS = G. Ciphertexts consist of two group elements, i.e.,
C = G×G. Moreover, the private-key space is SK = 〈{0, . . . , p− 1} ,+〉.
The core part of our construction are the following four MHT-PKE
algorithms.

Key Generation: Key-generation algorithm KeyGen chooses a private-
key sk uniformly at random from SK and sets the public-key pk =
gsk, i.e.,

(gsk, sk) � KeyGen().

Encryption: The encryption algorithm Enc encrypts message m under
public-key pk as c := (gr, pkr ·m) where r ∈ {1, . . . , p− 1} is chosen
uniformly at random.

Enc(pk,m; r) = (gr, pkr ·m)

Decryption Shares: Decryption share algorithm ShareDecrypt takes a
ciphertext c = (a, b) and a private-key sk and computes decryption
share x = a−sk, i.e.,

ShareDecrypt(sk, c = (a, b)) = a−sk.

Decode: The decoding algorithm Decode takes a ciphertext c = (a, b)
and a decryption share x and computes message m = x · b, i.e.,

Decode(x, c = (a, b)) = x · b.

Note also that x = m · b−1, i.e., Decode is efficiently invertible.

It is easy to show that those four algorithms satisfy the correctness
property required by Definition 2. In the following we assume that
decisional Diffie-Hellman (DDH) assumption holds in G (cf. Section 2.3.1).

3.3. MHT-PKE WITH REVERSIBLE RANDOMIZATION 33

A simple choice for G is a Schnorr Group, which is a q-order subgroup
of Z×p where p, q are primes with p = qr + 1 for some r. A more efficient
and therefore preferred alternative is to use an appropriate elliptic curve
group (see, e.g., [Bon98]).

Lemma 1. The above MHT-PKE scheme is IND-TCPA secure if DDH
holds for G.

Proof. We give a reduction of DDH to IND-TCPA. Consider a winner W̃
for the IND-TCPA game (cf. Definition 3). Then the following reduction
gives a winner W for DDH.

1. On input of (α, β, γ) from the outside set pk := α, choose a
random bit b, generate key pairs
(pk2, sk2), . . . , (pkl, skl) � KeyGen, and set
pk1 := pk · g−sk2 · . . . · g−skl . Then send pk, pk1, . . . , pkl and
sk2, . . . , skl to the winner W̃ .

2. Given the messages m0 and m1 from W̃ return (β, γ ·mb) to W̃ .

3. If W̃ guesses b correctly output 1, else output 0.

Reduction DDH to IND-TCPA

If the input (α, β, γ) is of the form (ga, gb, gab) the reduction returns
in the second step (gb, gab ·mb) = (gb, pkb ·mb) to W̃ which is a valid
encryption of mb under pk := α. The winner W̃ should therefore be
able to distinguish between (β, γ ·m0) and (β, γ ·m1) with non-negligible
advantage. If γ is uniform at random the tuple (β, γ ·mb) is independent
of bit b. The winner W̃ should therefore have a negligible advantage in
guessing the bit correctly.

Lemma 2. The above MHT-PKE scheme has the unif-KG property.

Proof. KeyGen chooses the private-key sk uniformly at random from SK.
Thus the output public-key is a uniform random element from PK.

Reversible-Randomization Algorithms.

The final part of our construction are the four (de)randomization al-
gorithms which complete the RR-MHT-PKE scheme. The used de-

34 CHAPTER 3. TOPOLOGY-HIDING COMMUNICATION

randomizer spaces are RKP = RKC = {0, . . . , p− 1}.

Public-Key Randomization: To randomize a public-key pk the key
randomization algorithm RandKey generates a key pair (grk, rk) �
KeyGen and multiplies pk with grk. The private value rk acts as
the de-randomizer.

(p̃k, rk) = (grk · pk, rk) � RandKey(pk)

Ciphertext De-Randomization: To de-randomize a given ciphertext
c̃ the de-randomization algorithm DerandCipher essentially computes
a decryption share for rk and strips it from c̃.

DerandCipher
(
rk, c̃ = (a, b)

)
= (a, a−rk · b)

We observe that DerandCipher is efficiently invertible.

Ciphertext Randomization: To randomize a ciphertext c = (a, b) the
algorithm RandCipher chooses a random r, r′ ∈ G, and a random
d ∈ {1, . . . , p− 1} and computes9 e ∈ {1, . . . , p− 1} with e · d ≡p 1.
If a 6= eG it exponentiates a with e, otherwise it replaces a by r.

(ĉ, rk) =
{ (

(ae, r′), d
)

if a 6= eG(
(r , r′), 0

)
if a = eG

� RandCipher
(
c = (a, b)

)
Decryption-Share De-Randomization: To de-randomize a given de-

cryption share x̂ the algorithm computes x̂rk.

DerandShare(rk, x̂) = x̂rk

We observe that DerandShare is efficiently invertible.

We can now show that the above algorithms satisfy the correctness
properties of Definition 5. For a public key pk let (p̃k, rk) � RandKey(pk).
For any message m consider the encryption c̃ = Enc(p̃k,m; r) of m under
public-key p̃k with randomness r. Then we have

DerandCipher(rk, c̃) = (gr, (gr)−rk · grk·r · pkr ·m)
= (gr, pkr ·m) = Enc(pk,m; r).

9This can be done efficiently using the Extended Euclidean algorithm.

3.4. TOPOLOGY-HIDING COMMUNICATION 35

Next, for a ciphertext c = (a, b) let
(
ĉ = (â, b̂

)
, rk) � RandCipher(c). For

an arbitrary private-key sk let x̂ = ShareDecrypt
(
sk, ĉ

)
be the decryption-

share for ĉ. Then we have

DerandShare(rk, x̂) = x̂rk = â−sk·rk

=
{
a−sk·e·d = a−sk = ShareDecrypt(sk, c) if a 6= eG
r−sk·0 = eG = e−sk

G = ShareDecrypt(sk, c) if a = eG.

The correctness properties are thus fulfilled. It remains to show that the
scheme satisfies the IND-CKCA security property.

Lemma 3. The above RR-MHT-PKE scheme is IND-CKCA secure.

Proof. For any public key pair (p̃k, pk) there exists a rk ∈ RKP such that
p̃k = grk · pk. The key pair (p̃k, pk) is thus distributed interdependently
from b1. The adversary thus has a negligible advantage in guessing the
b1 correctly. Consider ciphertext pair

(
ĉ = (â, b̂), c = (a, b)

)
. As long as

a = eG or â 6= eG there exist r, r′, d such that (ĉ, rk) = RandCipher(c =
(a, b); r, r′, d). In this case the adversary thus has a negligible advantage in
guessing the b2 correctly. If a = eG and â = eG the ciphertext ĉ cannot be
the randomization of c and guessing b2 is easy. However, the probability
that a = eG and â = eG is negligible for q(κ) large enough.

Lemma 4. The above RR-MHT-PKE scheme is a secure.

Proof. Follows directly from Definition 7 and Lemmas 1,2, and 3.

3.4 Topology-Hiding Communication
In this section we present a construction which allows to securely and
topology-hidingly realize different types of communication channels using
black-box PKE. The section consists of the following four steps, each
treated in a separate sub-section.

Topology-Hiding Encryption. In Section 3.4.1, a topology-hiding
threshold encryption protocol based on black-box RR-MHT-PKE is pre-
sented. More precisely, we provide (1) a distributed setup protocol, (2)
an information-transmission protocol, and (3) a distributed decryption
protocol.

36 CHAPTER 3. TOPOLOGY-HIDING COMMUNICATION

Topology-Hiding Boolean-OR. In Section 3.4.2 we present a pro-
tocol which, for networks with moderate degree and diameter, securely
and topology-hidingly realizes the multi-party Boolean-OR functionality
using the topology-hiding threshold encryption protocol from the previous
section.

Topology-Hiding Broadcast and Secure Channels. Finally, in Sec-
tion 3.4.3 we use the Boolean-OR functionality to securely and topology-
hidingly realize secure channels and broadcast. The main result of this
section is the following theorem.

Theorem 1. Given a network NG with diameter D and maximum degree
d where dD = poly(κ) there exists a protocol which securely and topology-
hidingly realizes broadcast using black-box RR-MHT-PKE. The protocol
communicates at most (d+ 1)D · n · λ bits within 5 ·D rounds, where λ is
linear (with small constant, less than 5) in κ.

3.4.1 Topology-Hiding Threshold Encryption
In this section we build a topology-hiding threshold encryption protocol
using a secure RR-MHT-PKE scheme. More precisely, we provide (1) a
distributed setup protocol, (2) an information-transmission protocol, and
(3) a distributed decryption protocol. Looking ahead, those protocols will
allow us to topology-hidingly realize the Boolean-OR functionality.

The RR-MHT-PKE Scheme. We assume that the parties have ac-
cess to a secure RR-MHT-PKE scheme with security parameter κ, where
n = poly(κ). In particular, each party has local (black-box) access to the
algorithms of the RR-MHT-PKE scheme. We refer to Section 3.3.3 for
secure a RR-MHT-PKE scheme based on the DDH assumption.

The Network Graph. A prerequisite for our protocols to work is that
the network graph G of NG is connected. Otherwise (global) information
transmission is not possible. The parties also need to know upper bounds
on the maximum degree and the diameter of the network graph. We
therefore assume that the parties have access to an initialized network
N d,D
G where the graphs in the family G are connected, have a maximum

degree of d ≤ n, and a diameter of at most D ≤ n where d and D are

3.4. TOPOLOGY-HIDING COMMUNICATION 37

publicly known. For simplicity we restrict ourselves to present protocols for
d-regular network graphs. We point out that one can extend the presented
protocols to the general case where parties may have less than d neighbors.
The idea is that a party which has less than d neighbors pretends to have d
neighbors by emulating (messages from) virtual neighbors (cf. [MOR15]).

Setup Protocol

In this section we present a protocol which allows to topology-hidingly
generate a threshold-setup where each party Pi holds a public key PKi
such that the corresponding private-key is shared among all parties. The
high-level idea of our protocol is as follows. We first observe that the
D-neighborhood of Pi consists of all parties. The setup provides party Pi
with a public key where the corresponding private-key is shared among the
parties in the D-neighborhood NG[i]D of Pi. The setup can be generated
recursively. In order to generate a k-neighborhood public-key PK(k)

i , Pi
asks each of its neighbors to generate a public key where the private key
is shared in the neighbor’s (k − 1)-neighborhood. It can then compute
PK(k)
i by combining the received public-keys.

Definition 8. A setup for topology-hiding threshold encryption over a
network N d,D

G consists of the following parts.

Private-Key Shares: Each party Pi holds a vector (SK(0)
i , . . . , SK(D)

i) of
D + 1 private keys which we call its private-key shares. For any
0 ≤ k ≤ D we denote by PK(k)

i the public key corresponding to SK(r)
i .

Public-Keys: Each party Pi holds D + 1 public keys (PK(0)
i , . . . , PK(D)

i)
where PK(0)

i = PK(0)
i and PK(k)

i = PK(k)
i ·

∏
Pj∈NG(i) PK(k−1)

j . We call
PK(k)
i the level-k public-key of Pi and denote by SK(r)

i the corre-
sponding (shared) private key. The public-key of Pi is PKi := PK(D)

i

and the shared private-key is SKi := SK(D)
i .

Local Pseudonyms: Each party Pi privately holds an injective random
function νi(·) : NG(i) → {1, . . . , d} which assigns each neighbor
Pj ∈ NG(i) a unique local identity νi(j) ∈ {1, . . . , d}. W.l.o.g. we
will assume that νi(i) = 0.

38 CHAPTER 3. TOPOLOGY-HIDING COMMUNICATION

We remark that the condition on the public-keys ensures that any 0 ≤
k ≤ D the private key SK(k)

i is properly shared among the k neighborhood
of Pi, i.e., each party in the k-neighborhood holds a non-trivial share.

Definition 9. A protocol is a secure (topology-hiding) setup protocol
over a network N d,D

G if it has the following properties.

Correctness: The protocol generates with overwhelming probability a
setup for topology-hiding threshold encryption over network N d,D

G .

Topology-Hiding Simulation: The adversarial view in a protocol ex-
ecution can be simulated with overwhelming probability given the
neighborhood of dishonest parties in N d,D

G and the output of dishon-
est parties, i.e., given the values{

NG(i), νi(·), SK(0)
i , . . . , SK(D)

i , PK(0)
i , . . . , PK(D)

i

}
Pi∈H

The simulation property ensures in particular that (a) the adversary
does not learn more about the network topology and that (b) the adversary
does not learn the private key corresponding to the public key PK(k)

i of
party Pi unless it corrupts the entire k-neighborhood of Pi.

Require: Parties have access to an initialized N d,D
G .

1: Each Pi generates the local identities νi(·) and sub-key pair
(PK(0)

i , SK(0)
i) � KeyGen. Then it sets PK(0)

i = PK(0)
i .

2: for k = 1, . . . , D do
3: Each Pi sends PK(k−1)

i to each Pj ∈ NG(i) using N .
4: Each Pi generates sub-key pair (PK(k)

i , SK(k)
i) � KeyGen.

5: Each Pi computes PK(k)
i = PK(k)

i ·
∏
Pj∈NG(i) PK(k−1)

j .
6: end for

Output: Pi outputs νi(·), (SK(0)
i , . . . , SK(D)

i), and (PK(0)
i , . . . , PK(D)

i).

Protocol GenerateSetup

Lemma 5. Given a secure RR-MHT-PKE scheme protocol GenerateSetup
is a secure setup protocol. The protocol communicates D · d · n · log|PK|
bits within D rounds.

3.4. TOPOLOGY-HIDING COMMUNICATION 39

Proof. Correctness: It follows directly from protocol inspection that the
setup generated by GenerateSetup is valid for N d,D

G .
Topology-Hiding Simulation: The view of the adversary during an

actual protocol execution is

view


NG(i), νi(·),

{
PK(k)
i , PK(k)

i , SK(k)
i

}
0≤r≤D

,{
PK(k)
j

}
Pj∈NG(i),0≤r≤D−1


Pi∈H

.

Now consider the view where public keys
{

PK(k)
j

}
Pj∈NG(i)∩H,0≤r≤D−1

are replaced by freshly generated public keys using KeyGen, i.e.,

view


NG(i), νi(·),

{
PK(k)
i , PK(k)

i , SK(k)
i

}
0≤r≤D

,{
P̃K

(k)
j

}
Pj∈NG(i)∩H,0≤r≤D−1


Pi∈H

.

Note that the second view can be easily computed by a simulator given
the outputs of dishonest parties. It remains to show that those views are
computationally indistinguishable. Note that for any Pj ∈ NG(H) ∩H
the public-key PK(k)

j has the form pk1 · pk where

pk1 = PK(k)
j and pk =

∏
Pi∈NG(j)

PK(k−1)
i .

The indistinguishability therefore follows from the unif-KG property of
the RR-MHT-PKE scheme.

Communication Complexity: The protocol runs for D rounds and in
each round n · d public-keys are sent.

Information-Transmission Protocol

In this section we present a topology-hiding information-transmission
protocol. Here, each party has a message mi and a public-key pki

10 as
input. The output of party Pi is a ciphertext ci under the public key pki.

10For notational simplicity we use uppercase letters for public-/private-keys which
are part of the setup for N d,DG and lowercase letters for arbitrary public-/private-keys.

40 CHAPTER 3. TOPOLOGY-HIDING COMMUNICATION

If all parties input the 0-message, ci is an encryption of 0. Otherwise, ci
is an encryption of a random, non-zero message.

The information-transmission protocol has a recursive structure and
is thus parametrized by a level k. The protocol requires that parties have
generated local pseudonyms. We therefore assume that the parties have
access to a setup for topology-hiding threshold encryption over N d,D

G .
Definition 10. A protocol is a level-k (topology-hiding) secure infor-
mation-transmission protocol over a network N d,D

G if it has the following
properties.

Setup, Inputs, and Outputs: The parties initially hold a setup for
topology-hiding threshold encryption over N d,D

G (cf. Definition 8).
Each party holds as input a message mi ∈ M and a public key
pki ∈ PK (not necessarily part of its setup). The output of each
party Pi is a ciphertext ci ∈ C.

Correctness: With overwhelming probability the output ci is the en-
cryption of message si under pki and randomness ρi (i.e. ci =
Enc(pki, si; ρi)) with

si =
{

0 if mj = 0 for all Pj ∈ NG[i]k
xi if mj 6= 0 for at least one Pj ∈ NG[i]k

where xi ∈M \ {0} uniform at random.

Topology-Hiding Simulation: The adversarial view in a real protocol-
execution can be simulated with overwhelming probability given the
following values{

NG(i),mi, pki, ci, νi(·)
}
Pi∈H

∪
{
si, ρi

}
NG[i]k⊆H .

In other words the simulator gets the neighborhood of dishonest
parties (in N d,D

G), their protocol in- and outputs, and their local
pseudonyms from the setup. For any party Pi where the whole k-
neighborhood is dishonest the simulator is additionally given the
content si and the randomness ρi of output ci.

The simulation property ensures in particular that (a) the adversary
does not learn more about the network topology and that (b) the adversary
does not learn the content of ciphertext ci of party Pi unless it corrupts
the entire k-neighborhood of Pi.

3.4. TOPOLOGY-HIDING COMMUNICATION 41

Require: Parties have access to an initialized N d,D
G and have generated

local pseudonyms.
Input: Each Pi inputs a message mi and a public key pki.
1: if k = 0 then
2: Each Pi computes ci = Enc(pki, 0) if mi = 0 or ci = Enc(pki, xi)

if mi 6= 0 where xi ∈M \ {0} uniform at random.
3: else
4: Each Pi computes (p̃ki, rki) � RandKey(pki) and sends p̃ki to

each Pj ∈ NG[i] which denotes the received key by pkj,νj(i).
5: for l = 0, . . . , d do
6: The parties compute ciphertexts (c̃1,l, . . . , c̃n,l) by invoking

InfoTransmisson
(
k − 1, (m1, pk1,l), . . . , (mn, pkn,l)

)
.

7: end for
8: Each Pi sends c̃i,νi(j) to Pj ∈ NG[i].
9: Each Pi computes ci =

(∏
Pj∈NG[i] DerandCipher(rki, c̃j,νj(i))

)ri
for a uniform random ri ∈ {1, . . . , |M| − 1}.

10: end if
Output: Each Pi outputs ci.

Protocol InfoTransmisson
(
k, (m1, pk1), . . . , (mn, pkn)

)

Lemma 6. Given a secure RR-MHT-PKE scheme and for any parameter
0 ≤ k ≤ D with dk = poly(κ), protocol InfoTransmisson

(
k, (m1, pk1), . . .

, (mn, pkn)
)
is a secure level-k information-transmission protocol. The

protocol communicates at most (d+ 1)k · n · (log|PK|+ log|C|) bits within
2k rounds.

Proof. (sketch) Correctness: For k = 0 each party locally computes ci
as specified by the correctness property. The protocol thus achieves
correctness perfectly. For k > 0 assume that the protocol achieves
correctness for (k − 1). More precisely, the output of a party Pj for
parameter (k − 1) is computed perfectly correct if all (k − 1)-neighbors
have input 0. Otherwise, the output of Pj for parameter (k − 1) is
computed correctly except with error probability εk−1. First, we consider
the case where all parties in the k-neighborhood of Pi have input 0. The
assumption for (k − 1) implies that all c̃i,νi(j) contain 0. The properties
of the RR-MHT-PKE scheme imply that si = ri · 0 = 0. In the second
case at least one party in the k-neighborhood of Pi has a non-zero input.
This implies that at least one c̃i,νi(j) contains a uniform random, non-zero

42 CHAPTER 3. TOPOLOGY-HIDING COMMUNICATION

message (with error probability of at most εk−1). The properties of the
RR-MHT-PKE thus ensure that ci contains a uniform random, non-zero
message (except with error probability εk := εk−1 + 1

|M|). This implies
an overall success probability of at least 1− (k·n|M|).

Topology-Hiding Simulation: To simulate the view of the adversary
the simulator is given{

NG(i),mi, pki, ci, νi(·)
}
Pi∈H

∪
{
si, ρi

}
NG[i]k⊆H .

For k = 0 those values correspond exactly to the view of the adversary
during an actual protocol execution. Simulation is thus easy. For the
case k > 0 assume that the view of the adversary can be simulated for
k′ < k. The view of the adversary can now be simulated as follows. At
the beginning, the simulator generates all public keys and de-randomizers
seen by the adversary. For each dishonest Pi the simulator computes
rki, p̃ki using RandKey. For each honest Pj in the neighborhood of H
the simulator sets p̃kj to a random public-key using KeyGen. Due to the
IND-CKCA property of the RR-MHT-PKE scheme these public keys are
indistinguishable from the corresponding public-keys seen by the adversary
in an actual protocol-execution. The above values also determine all keys
pki,νi(j) for Pi ∈ H and Pj ∈ NG(i). Now, we consider the ciphertexts
seen by the adversary in the second part of the protocol. In essence
the simulator must generate all c̃j,νj(i) where Pi and/or Pj are dishon-
est. If the whole (k − 1)-neighborhood of Pj is dishonest the simulator
must also provide the content and the randomness of c̃j,νj(i) which are
required for the sub-simulation of the recursive protocol invocations. We
recall that DerandCipher is efficiently invertible if the de-randomizer is
known. First, simulator generates a random ri ∈ {1, . . . , |M| − 1} for
each dishonest Pi. If the whole k-neighborhood of Pi is dishonest (i.e.,
NG[i]k ⊆ H) the simulator is additionally given si and ρi. This allows
the simulator to compute for each neighbor Pj ∈ NG[i] a valid sj,νj(i),
randomness ρj,νj(i), and an encryption c̃j,νj(i) = Enc(p̃ki, sj,νj(i); ρj,νj(i))
such that ci =

(∏
Pj∈NG[i] DerandCipher(rki, c̃j,νj(i))

)ri . If there ex-
ists a honest party in the k-neighborhood of Pi, the simulator is not
given si and ρi. However, in this case there is at least one Pj in
NG[i] such that NG[j]k−1 6⊆ H. This allows the simulator to first
generate all sj,νj(i), ρj,νj(i) and c̃j,νj(i) = Enc(p̃ki, sj,νj(i); ρj,νj(i)) where
NG[j]k−1 ⊆ H. Then it chooses the remaining c̃j,νj(i) randomly under

3.4. TOPOLOGY-HIDING COMMUNICATION 43

the constraint that ci =
(∏

Pj∈NG[i] DerandCipher(rki, c̃j,νj(i))
)ri . In a

final step the adversary generates for any honest Pj ∈ NG[i] the values
si,νi(j), ρi,νi(j) and c̃i,νi(j) = Enc(p̃kj , si,νi(j); ρi,νi(j)). The IND-TCPA
property of the RR-MHT-PKE scheme and the correctness property of
the protocol ensure that the generated ciphertexts are indistinguishable
from the ones seen by the adversary in an actual protocol execution.
Now all values required for the simulation of the d + 1 invocations of
InfoTransmisson with parameter (k− 1) are given. The simulator can thus
use the sub-simulator to generate the view of the adversary in the middle
part of the protocol.

Communication Complexity: Let f(k) be the communication com-
plexity of InfoTransmisson

(
k, . . .

)
. Then we have f(0) = 0 and f(k) =

d · n · (log|PK|+ log|C|) + (d+ 1) · f(k − 1). This results in a communi-
cation complexity of at most (d + 1)k · n · (log|PK| + log|C|) bits. The
round complexity follows from the observation that one can invoke the
subprotocols InfoTransmisson(k − 1, . . .) in parallel.

Decryption Protocol

In this section we describe a distributed decryption protocol which allows
each party Pi to decrypt a ciphertext ci under its shared private-key SKi
which has been generated by the setup protocol. The decryption protocol
consists of two parts. First the parties jointly compute for each ciphertext
ci a decryption-share xi under the shared private-key of Pi. In a second
phase each party Pi can locally decrypt ci using the decryption share xi.
First, we present a subprotocol which allows to compute the required
decryption shares. The key-idea is to use the homomorphic property of
decryption-shares which allows a recursive computation. The subprotocol
is therefore parametrized by k.

Definition 11. A protocol is a secure level-k (topology-hiding) decryp-
tion-share protocol over a network N d,D

G if it has the following properties.

Setup, Inputs, and Outputs: The parties initially hold a setup for
topology-hiding threshold encryption over N d,D

G (cf. Definition 8).
Each party Pi inputs a ciphertext ci ∈ C. The output of party Pi is
a decryption share xi ∈ DS.

44 CHAPTER 3. TOPOLOGY-HIDING COMMUNICATION

Correctness: With overwhelming probability xi = ShareDecrypt(SK(k)
i , ci)

where SK(k)
i is the level-k shared private-key of Pi from the setup.

Topology-Hiding Simulation: The adversarial view in a real protocol-
execution can be simulated with overwhelming probability given the
following values{

NG(i), ci, xi, νi(·), SK(0)
i , . . . , SK(k)

i

}
Pi∈H

In other words the simulator gets the neighborhood of dishonest par-
ties (in N d,D

G), their protocol in- and outputs, their local pseudonyms,
and their private-key shares (up to level-k) of the assumed setup.

The simulation property ensures in particular that the adversary does
not learn more about the network topology.

Require: Parties have access to an initialized N d,D
G and have generated

a setup for topology-hiding threshold encryption over N d,D
G .

Input: Each Pi inputs a ciphertext ci.
1: if k = 0 then
2: Each Pi computes xi = ShareDecrypt(SK(0)

i , ci).
3: else
4: Each Pi computes (rki, ĉi) = RandCipher(ci) and sends ĉi to each

Pj ∈ NG(i) which denotes the received value by cj,νj(i).
5: for l = 1, . . . , d do
6: Parties jointly compute (x1,l, . . . , xn,l) = DecShares(k −

1, c1,l, . . . , cn,l).
7: end for
8: Each Pi sends xi,νi(j) to each Pj ∈ NG(i).
9: Each Pi computes first x̂i =

∏
Pj∈NG(i) xj,νj(i) and then xi =

DerandShare(rki, x̂i) · ShareDecrypt(SK(k)
i , ci).

10: end if
Output: Each Pi outputs xi.

Protocol DecShares(k, c1, . . . , cn)

Lemma 7. Given a secure RR-MHT-PKE scheme and for any parameter
0 ≤ k ≤ D with dk = poly(κ) the above protocol DecShares(k, c1, . . . , cn)

3.4. TOPOLOGY-HIDING COMMUNICATION 45

is a secure level-k decryption-share protocol. The protocol communicates
dk · n · (log|DS|+ log|C|) bits within 2k rounds.

Proof. (sketch) Correctness: The correctness essentially follows from
the structure of the assumed setup and from the properties of the
RR-MHT-PKE scheme. In the case k = 0 we have SK(0)

i = SK0
i which

implies xi = ShareDecrypt(SK(0)
i , ci). For k > 0 we have SK(k)

i = SK(k)
i +∑

Pj∈NG(i) SK(k−1)
j . The properties of the RR-MHT-PKE scheme thus

imply that xi = ShareDecrypt(SK(k)
i , ci) (c.f. protocol line 9).

Topology-Hiding Simulation: In the case k = 0 the view of the adver-
sary is directly determined by values given to the simulator. Simulation
is therefore easy to achieve. In the case k > 0 the simulation of the ad-
versarial view works similar as for the information-transmission protocol
(we recall that DerandShare is efficiently invertible if the de-randomizer
is known). The simulator essentially emulates the protocol run. The
IND-CKCA property of the RR-MHT-PKE scheme allows the simulator
to choose random ciphertexts for ci,νi(j) of honest Pj . Moreover, the de-
cryption shares xj,νj(i) for honest Pj can also be chosen randomly (where
the distribution is conditioned on the outputs of dishonest parties). The
view during the executions of DecShares with parameter k − 1 can be
generated using the (k − 1)-subsimulator guaranteed by the induction
hypothesis.

Communication Complexity: Denote by f(k) be the communication
complexity of DecShares(k, . . .). Then we have f(0) = 0 and f(k) = n · d ·
(log|DS|+log|C|)+d·f(k−1). This results in a communication complexity
of f(k) = dk · n · (log|DS|+ log|C|). The round complexity follows from
the observation that one can invoke the subprotocols DecShares(k−1, . . .)
in parallel.

Definition 12. A protocol is a secure (topology-hiding) threshold de-
cryption protocol for network N d,D

G if it has the following properties.

Setup, Inputs and Outputs: The parties initially hold a setup for
topology-hiding threshold encryption over N d,D

G (cf. Definition 8).
Each party Pi inputs a ciphertext ci ∈ C. The output of party Pi is
a message mi.

Correctness: With overwhelming probability it holds for each party Pi

46 CHAPTER 3. TOPOLOGY-HIDING COMMUNICATION

that mi = Decode(ShareDecrypt(SKi, ci)) where SKi is the shared
private-key of Pi.

Topology-Hiding Simulation: The adversarial view in a real-protocol
execution can be simulated with overwhelming probability given the
following values

{
NG(i), ci,mi, νi(·), SK(0)

i , . . . , SK(D)
i

}
Pi∈H

In other words the simulator gets the neighborhood of dishonest par-
ties (in N d,D

G), their protocol in- and outputs, their local pseudonyms,
and their private-key shares of the assumed setup.

Require: Parties have access to an initialized N d,D
G and have generated

a setup for topology-hiding threshold encryption over N d,D
G .

Input: Each Pi inputs a ciphertext ci.
1: The parties compute (x1, . . . , xn) = DecShares(D, c1, . . . , cn).

Output: Each Pi outputs Decode(xi, ci).

Protocol Decryption(c1, . . . , cn)

Lemma 8. Decryption(k, c1, . . . , cn) is a secure threshold decryption pro-
tocol given a secure RR-MHT-PKE scheme The protocol communicates
dD · n · (log|DS|+ log|C|) bits within 2D rounds.

Proof. (sketch) Correctness: The correctness follows from Lemma 7 and
the properties of the RR-MHT-PKE scheme.

Topology-Hiding Simulation: The adversarial view in a real protocol
execution can be simulated as follows (recall that Decode is efficiently
invertible). First the simulator computes for each pair (ci,mi) a decryption
share xi such that mi = Decode(xi, ci). The rest of the view can then be
generated using the sub-simulator for DecShares(D, . . .).

Communication Complexity: The communication complexity and the
number of rounds follows directly from the invocation of DecShares with
parameter D.

3.4. TOPOLOGY-HIDING COMMUNICATION 47

3.4.2 Multi-Party Boolean OR
In this section we present a protocol which securely and topology-hidingly
realizes the multi-party Boolean-OR functionality FOR using the topology-
hiding threshold encryption protocol from the previous section. The
functionality FOR takes from each party Pi an input bit bi and computes
the OR of those bit, i.e., b = b1 ∨ · · · ∨ bn.

1. Every party Pi (and the adversary on behalf of corrupted parties)
sends (input) bit bi; if Pi does not submit a valid input, then FOR
adopts bi = 0.

2. Every party Pi receives (output) b = b1 ∨ · · · ∨ bn.

Functionality FOR

Assumptions. We assume in the following that the parties have access
to a secure RR-MHT-PKE scheme with security parameter κ, where
n = poly(κ). Moreover, parties are given the network N d,D

G where the
graphs in the family G are connected, have a maximum degree of d ≤ n,
and a diameter of at most D ≤ n where d and D are publicly known.

Initialization:

1: Each party Pi inputs its neighborhood NG[i] into N d,D
G .

2: The parties generate a setup for topology-hiding threshold
encryption over N d,D

G using GenerateSetup.

Computation:

Input: Each party Pi inputs a bit bi.
1: Each party Pi sets mi = 0 if bi = 0. Otherwise, its sets mi to an

arbitrary message inM\ {0}.
2: The parties compute

(c1, . . . , cn) = InfoTransmisson
(
D, (m1, PK1), . . . , (mn, PKn)

)
.

3: The parties compute (m′1, . . . ,m′n) = Decryption(c1, . . . , cn).
Output: If m′i = 0 Pi outputs 0. Otherwise it outputs 1.

Protocol Boolean-OR(b1, . . . , bn)

48 CHAPTER 3. TOPOLOGY-HIDING COMMUNICATION

Lemma 9. Given a secure RR-MHT-PKE scheme and for d,D with
dD = poly(κ) the protocol Boolean-OR(b1, . . . , bn) securely and topology-
hidingly realizes FOR (in the N d,D

G -hybrid model). In the initialization
phase the protocol Boolean-OR(b1, . . . , bn) communicates D ·d ·n · log|PK|
bits within D rounds. In the computation phase the protocol communicates
at most (d+ 1)D ·n · (log|DS|+ log|PK|+ 2 log|C|) bits within 4 ·D rounds.

Proof. Correctness: We assume the condition dD = poly(κ). The cor-
rectness thus follows directly from the properties of Lemmas 5, 6, and 8
as the information-transmission protocol essentially allows to compute
Boolean-ORs.

Topology-Hiding Simulation: Given the values
{
NG(i), bi, b

}
Pi∈H

the
view of the adversary can be simulated as follows. First the simulator
generates a setup for N d,D

G . Next, for each dishonest Pi the simulator
computes the messages mi and m′i. It generates the corresponding ci-
phertext ci (including the randomness). With those values the simulator
now runs the sub-simulators for GenerateSetup, InfoTransmisson(D, . . .),
and Decryption(. . .). The properties of Lemmas 5, 6, and 8 ensure that
the generated view is indistinguishable (for the adversary) from a real
protocol execution.

Communication Complexity: The claimed communication complexity
follows directly from the used subprotocols.

Remark. If the RR-MHT-PKE is instantiated using the DDH based
construction from Section 3.3.3, the computation complexity of the protocol
Boolean-OR is similar to its communication complexity.

3.4.3 Topology-Hiding Broadcast
In this section we describe a protocol which securely realizes the (bit)
broadcast functionality FsBC, while making black-box use of the FOR
functionality from the previous section. The functionality FsBC allows
sender Ps to input a bit bs which is output to all parties. This result
directly implies that one can securely and topology-hidingly realize secure
channels and broadcast using black-box RR-MHT-PKE.

3.5. APPLICATIONS 49

Require: The sender Ps inputs a bit bs.
1: The parties compute (b, . . . , b) = FOR(0, . . . , bs, . . . , 0).

Output: Each party Pi outputs b.

Protocol Broadcast(Ps, bs)

Lemma 10. The protocol Broadcast(Ps, bs) securely realizes the FsBC
functionality in the FOR-hybrid model.

Proof. We have that b = 0∨· · ·∨bs∨· · ·∨0 = bs which implies correctness.
The view of the adversary in an actual protocol execution consists of inputs
and outputs of dishonest parties and is therefore easy to simulate.

This implies the following Corollary.

Corollary 1. For d,D with dD = poly(κ) one can securely and topology-
hidingly realize FsBC (in the N d,D

G -hybrid model) given a secure black-box
RR-MHT-PKE scheme while communicating at most (d+1)D ·n·(log|DS|+
log|PK|+2 log|C|)+D ·d·n·log|PK| bits within 5·D rounds per invocation.

Moreover, parties can simply realize secure channels given broadcast.
First the receiver generates a key pair and broadcasts the public-key. The
sender then broadcasts his message encrypted under this public-key.

Corollary 2. For d,D with dD = poly(κ) one can securely and topology-
hidingly realize secure channels (in the N d,D

G -hybrid model) using black-box
RR-MHT-PKE. The communication complexity is twice the one of the
broadcast protocol.

3.5 Applications
In this section we provide two applications of our network-hiding com-
munication protocols. Namely, one can securely and topology-hidingly
realize MPC and anonymous broadcast.

3.5.1 Topology-Hiding Secure MPC
The protocols from the previous section allow parties to topology-hidingly
realize a complete network of secure channels (including broadcast chan-
nels). They can then use this network to execute a multi-party protocol

50 CHAPTER 3. TOPOLOGY-HIDING COMMUNICATION

of their choice, e.g., [GMW87, Pas04]. This easily proves the following
result.

Theorem 2. For d,D with dD = poly(κ) one can securely and topology-
hidingly realize any given multi-party functionality (in the N d,D

G -hybrid
model) using black-box RR-MHT-PKE.

Proof. This directly follows from Corollaries 1 and 2.

3.5.2 Anonymous Broadcast
Theorem 2 implies that one can topology-hidingly realize anonymous
channels given black-box access to a RR-MHT-PKE scheme. But using
generic MPC to achieve an anonymous channel is expensive in terms
of communication complexity. We therefore provide a protocol in the
FOR-hybrid model which directly realizes anonymous broadcast FABC.

The functionality FABC generates for each party a unique but random
pseudonym. In the subsequent communication rounds each party can
publish messages under its pseudonym. Message are linkable which means
that parties can relate messages to pseudonyms. If desired, parties can pre-
vent this by generating fresh pseudonyms (e.g., after each communication
round).

Initialization:

1: The functionality generates a random permutation σ of n elements.
2: Each party Pi gets output σ(i).

Communication Step:

Require: Each party Pi inputs a bit bi.
Output: The parties get the vector (o1, . . . , on) as output where

oσ(i) = bi.

Functionality FABC

Anonymous Broadcast Protocol. The high-level idea of our con-
struction is as follows. In a scheduling phase each party gets a random
(but unique) communication slot σ(i) assigned. In a communication round

3.5. APPLICATIONS 51

for each slot σ(i) the FOR functionality is invoked which allows Pi to
broadcast its bit.

The major challenge is to compute the slot assignment. We solve
this issue with a scheduling loop11. At the beginning each party selects
a random slot. Then over several scheduling rounds the parties resolve
colliding selections by computing a reservation matrix. The size of this
matrix (parametrized by m) determines the collision detection probability.
A larger m means a faster expected run time at the cost of increased
communication costs per round.

1: Each party Pi chooses a random slot si ∈ {1, . . . , n}.
2: repeat
3: Each party Pi chooses a random token ri ∈ {1, . . . ,m} and

computes the n ×m-matrix A(i) = (a(i)
x,y) where a(i)

si,ri = 1 and
a

(i)
x,y = 0 otherwise.

4: The parties compute the matrix A = (ax,y) where ax,y = a
(1)
x,y ∨

· · · ∨ a(n)
x,y by invoking FOR.

5: If there exists an r < ri such that asi,r = 1 party Pi chooses a
new random slot si ∈ {1, . . . , n} such that si-th row of A contains
only zeros.

6: until Each row of A contains exactly one 1.
Output: Each party Pi outputs si.

Protocol AssignSlots(m)

Lemma 11. The protocol AssignSlots(m) for the FOR-hybrid model se-
curely computes a random permutation σ of n elements where each party
Pi learns σ(i). The expected number of rounds the protocol requires to
compute the permutation is bounded by m

m−1 · n where FOR is invoked
n ·m times per round.

Proof. Correctness: The protocol terminates if each row of A contains
exactly one non-zero entry. Thus each slot in {1, . . . , n} has been chosen
at least by one party. As there are n parties this also means that no slot
was chosen twice. The output is therefore a valid permutation. Inspection
of the protocol also reveals that the permutation is chosen uniform at

11A similar idea was used recently in [KNS16].

52 CHAPTER 3. TOPOLOGY-HIDING COMMUNICATION

random (we consider passive security).
Termination: Next, we show that the protocol eventually terminates.

Each slot is in one of three states. Either its empty, or its selected by
multiple parties, or it is assigned to a single party. We observe that the
state transition function for slots is monotone. A selected slot cannot
become empty and an assigned slot stays assigned to the same party. In
each round where a collision is detected at least one empty slot becomes
assigned. After at most n such rounds there are no empty slots left. But
this also means that each slot is selected by at least one party and the
protocol terminates.

Round Complexity: The above argument also leads to a crude upper
bound on the number of expected rounds. We observe that a collision
between two parties is detected with a probability of at least p = (1− 1

m).
The expected number of rounds required to detect a collision is therefore
at most 1

p = m
m−1 (geometric distribution). The number of expected

rounds is thus bounded by m
m−1 · n.

Simulation: It remains to consider the simulation of the adversarial
view. We observe that the (current) slot selection of dishonest parties is
enough to simulate the view of the adversary in a scheduling round. The
simulator can therefore essentially emulate the protocol (conditioned on
the final slots of dishonest parties).

We can now combine this scheduling protocol with the broadcast
protocol from Section 3.4.3 to build a protocol which achieves anonymous
broadcast.

Initialization:

1: The parties compute (σ(1), . . . , σ(n)) = AssignSlots(m).

Communication Step:

Require: Each party Pi inputs a bit bi.
1: for s = 1, . . . , n do
2: The parties compute

(os, . . . , os) = Boolean-OR(0, . . . , bσ−1(s), . . . , 0).
3: end for

Protocol Anonymous Broadcast(m)

3.5. APPLICATIONS 53

Output: Each party Pi outputs vector (o1, . . . , on).

Lemma 12. The protocol Anonymous Broadcast(m) securely realizes the
functionality FABC in the FOR-hybrid model.

Proof. The statement follows directly from Lemmas 11 and 10.

Corollary 3. For d,D with dD = poly(κ) one can securely and topology-
hidingly realize FABC (in the N d,D

G -hybrid model) given a secure black-box
RR-MHT-PKE scheme

Chapter 4

Classification of
Consistency
Specifications

The content of this chapter is based on the works [LMT16] and [LMT17].

4.1 Introduction
The seminal result of [LSP82] and [KY84] states that given authenticated
channels, broadcast can be achieved if and only if strictly less than n

3 of
the involved parties behave dishonestly, even if an error probability of less
than 1

3 were tolerated. This raises questions such as “What is required
to construct broadcast if more parties are dishonest?” and “What are
the consistency guarantees one can achieve with authenticated channels?”.
Broadcast itself guarantees a very strong form of consistency. The study of
primitives with a weaker form of consistency guarantee is well-motivated
for two different reasons described below.

First, as argued by Lamport in [Lam83], there are settings of practical
relevance where a weaker form of broadcast is sufficient. Specifically, in
the transaction commit problem, a database transaction is coordinated by
some (not necessarily honest) party P1 who decides whether a transaction

56 CHAPTER 4. CLASSES OF CONSISTENCY SPECIFICATIONS

should be committed or aborted. A single dishonest party Pi may be
enough to cause the transaction to be aborted, but in this case, the honest
parties must agree on whether to abort the transaction, or to commit
to it. To formalize this setting, [Lam83] introduced a weaker form of
broadcast, which we will henceforth refer to as a weak broadcast channel.
This channel behaves like a regular broadcast channel if all parties are
honest, but requires the validity condition to hold only if every party
is honest. Such a guarantee may be achievable even if broadcast is not
achievable.

Second, such a weaker primitive might be assumed to be available, and
one can ask whether a stronger primitive (e.g. a broadcast channel) can
be achieved by a protocol that not only can use authenticated channels,
but also has access to the weaker primitive. A result of this type, proved
in [FM00], is that broadcast is achievable up to n

2 cheaters, assuming that
each party can broadcast to any two other parties.

The ultimate goal of a theory in this field is a characterization of
various levels of consistency guarantees as well as the hierarchy between
them.

4.1.1 Contribution and Outline
In this chapter, we are concerned with refining the hierarchy between
different types of consistency guarantees.

We proceed as follows. In Section 4.2, we revisit the notion of consis-
tency specifications introduced in [Mau04]. A consistency specification
captures, for every set H of (assumed) honest parties and for every tuple of
input values of these honest parties, which tuples of output values are pos-
sible, no matter what the other parties do. In other words, a specification
guarantees that no adversarial behavior can result in the honest parties’
output values to be outside the specified set of tuples. Note that while
this concept captures consistency guarantees in the most general form,
it (intentionally) does not capture secrecy guarantees. In this section we
provide rigorous definitions of the basic concepts and introduce different
flavors of constructions. We also extend the framework of [Mau04] to
include probabilistic protocols (rather than only deterministic ones).

Next in Section 4.3, we investigate a stronger form of the broadcast
impossibility result shown in [LSP82]. As it is common for impossibility
results in distributed computing, we show all of our results in the setting of

4.1. INTRODUCTION 57

three parties. We prove that even if two of the three parties can broadcast
values, there is no protocol that would allow the third party to broadcast
a value. The proof of this result requires a generalized version of so
called “scenario”-proofs (see, e.g., [FLM85]) where additional primitives
are given. This contribution, which is used throughout the chapter, is of
independent interest beyond the specific results of this work.

Section 4.4 deals with the classification of consistency specifications.
Here, one considers the closure of a given a set of consistency specifications,
i.e., all consistency specifications which one can construct from this set.
This leads to a natural classification where two specifications are in the
same class if they have the same closure. As an example we give a complete
classification of three-party specifications where a fixed party can give a
binary input and the other two parties each have a binary output.

In Section 4.5 we investigate the hierarchy of consistency primitives
between authenticated channels and broadcast. To this end, we propose
an intermediate level specification for three-parties which we call XOR-
cast. This channel takes a bit bi from Pi and a bit bj from Pj as input.
If all parties behave correctly, the value of bi ⊕ bj should be output
by all parties. If one of the parties Pi or Pj is dishonest, the honest
parties must output the same value. If the third Pk is dishonest, the
remaining parties must output bi ⊕ bj . We show a strong separation
between authenticated channels and broadcast by proving two strong
impossibility results, where we call an impossibility strong if it holds even
if a constant error probability is tolerated and even if an arbitrary number
of communication rounds are allowed. First, it is strongly impossible
to achieve XOR-cast from authenticated communication. Second, it is
strongly impossible to achieve broadcast from XOR-cast and authenticated
communication. This demonstrates that the hierarchy of primitives has a
more complex structure than previously known.

4.1.2 Related Work
Results on the possibility and impossibility of achieving broadcast when
other primitives (stronger than authenticated communication) are avail-
able were proved in [BGP89, PW96, CFF+05, HMR14, Ray15]. In a
related line of work, [JMS12, RMS+04] derive combinatorial lower bounds
on the number of partial broadcast channels among a set of parties needed
in order to still be able to achieve broadcast. The general problem of

58 CHAPTER 4. CLASSES OF CONSISTENCY SPECIFICATIONS

constructing consistency primitives from assumed such primitives was
proposed and formalized in [Mau04]. The notion of consistency speci-
fications does not allow to model secrecy requirements. A consistency
specification thus corresponds to a trusted party which enables dishonest
parties to learn the inputs of honest parties. For a more general setting
where secrecy matters, one may use security frameworks such as the uni-
versal composition framework [Can01] or the constructive cryptography
framework presented in [MR11] and [Mau11].

In [Lam83, FLM85] it is shown that there exists no perfectly secure
protocol which constructs weak broadcast from authenticated channels in
a finite number of rounds if n3 or more of the parties behave dishonestly.
On the other hand, Lamport provides a protocol which achieves weak
broadcast, but requires an infinite amount of runtime. This suggests
that weak broadcast is in some sense weaker than broadcast; namely,
the result in [LSP82] implies that there exists no such approximation
protocol for broadcast. However, in distributed computing or MPC one
is mostly interested in protocols which run for a fixed number of rounds
(or at least terminate eventually). Here, Lamport’s results show that
both weak broadcast and broadcast cannot be achieved with zero error
probability given authenticated channels. If one allows protocols with
an error probability negligible in the number of rounds, the impossibility
for broadcast still holds. On the other hand, it was shown in [FGH+02]
that weak broadcast can be achieved from authenticated channels with
arbitrary small error probability. Moreover, [LSP82, Lam83, FGH+02]
do not consider the relation between weak broadcast and broadcast.
Especially, it is not shown whether broadcast can be achieved given weak
broadcast.

Upper bounds on the success probability for probabilistic broadcast
and Byzantine agreement were also studied in [KY84, GY89]. The work of
Karlin and Yao [KY84] gives an upper bound of 2

3 for the fully synchronous,
round-based setting. Somewhat surprisingly, the work of Graham and
Yao [GY89] considers a synchronous model with a rushing adversary that
can observe the inputs of all other parties in each round before deciding
on its own input for the round. In this setting, [GY89] show the stronger
bound of (

√
5− 1)/2 and also give protocols that match this bound. Such

a stronger bound is possible only because the guarantee is stronger and
includes a secrecy guarantee: the adversary must not learn the output
too early.

4.2. PRELIMINARIES 59

4.2 Preliminaries
In this chapter we assume that the honest parties in P will execute
protocol instructions whereas dishonest parties can deviate arbitrarily
from the protocol.

4.2.1 Consistency Specifications
Primitives, such as a broadcast channel, provide the honest parties with
consistency guarantees. That is, for every set H of honest parties and
every possible choice ~xH of their inputs the consistency guarantees restrict
the set of possible outputs of the honest parties. Consistency guarantees
limit the influence of dishonest parties on the possible outputs of honest
parties. We thus model such primitives as functions called consistency
specifications that map a set of honest parties along with their inputs, to
a non-empty set of possible outputs of those parties. Here, a smaller set of
potential outputs implies a stronger guarantee offered by the consistency
specification, since the uncertainty over the actual output is smaller. More
formally, a consistency specification (introduced in [Mau04]) with input
domain D and output domain R is defined as follows.

Definition 13. A consistency specification with input domain D and
output domain R is a function which assigns every non-empty subset
H ⊆ P and every input tuple ~xH ∈ DH a non-empty set C(H,~xH) ⊆ RH
of output tuples. It satisfies the following monotonicity constraint: For
any non-empty subsets H ′ ⊆ H ⊆ P

C(H,~xH)|H′ ⊆ C(H ′, ~xH|H′). (4.1)

The monotonicity constraint models the fact that dishonest parties
can in particular behave correctly. This implies that larger sets of honest
parties cannot have weaker consistency guarantees.

Remark. Our definition of a consistency specification differs slightly from
the original version in [Mau04] where parties may have different input (or
output) domains. Here, parties are not allowed to have different input (or
output) domains. However, this is not a limitation. If parties should have
different input (resp. output) domains the actual input (resp. output)
domain of the consistency specification can be set to the union of all those

60 CHAPTER 4. CLASSES OF CONSISTENCY SPECIFICATIONS

domains and inputs outside a party’s input domain can be mapped to a
default input. Moreover, if all parties are dishonest, i.e., H = ∅, there
are no consistency guarantees to be formulated. We therefore restrict the
domain of consistency specifications to non-empty subsets H ⊆ P.

Examples of Consistency Specifications. We consider two impor-
tant examples of consistency specifications that we will use throughout
this chapter. In both examples the input and output domain are bits, i.e.,
D = R = {0, 1}.

Example 1. A bit broadcast channel BCi for sender Pi is the following
consistency specification:

BCi(H,~xH) =
{
~yH ∈ {0, 1}H

∣∣∣∣ ∃v ((∀j ∈ H : ~yH|{j} = v)
∧ (i ∈ H ⇒ v = ~xH|{i})

) } .
Example 2. An authenticated bit-channel Authi,j from Pi to Pj guar-
antees that Pj’s output is equal to the input of Pi if both of them are
honest:

Authi,j(H,xH) =
{
~yH ∈ {0, 1}H

∣∣∣ i, j ∈ H ⇒ ~yH|{j} = ~xH|{i}

}
.

Parties without Input or Output. Formally, a consistency specifica-
tion requires that any (honest) party has (to provide) an input and has (to
receive) an output. However, in the above example inputs of all (honest)
parties except Pi have no influence on the consistency guarantee. We say
that such parties have no input. Similarly, for the authenticated channel
Authi,j the output of all parties except Pj provide no information (they
are arbitrary). We say that such parties have no output.

Definition 14. Let C be a consistency specification with input domain
D and output domain R. A party Pi has no input if for every H with
Pi ∈ H and all ~aH ,~bH ∈ DH with ~aH |H\{i} = ~bH |H\{i} it holds that
C(H,~aH) = C(H,~bH). A party Pi has no output if for every H with
Pi ∈ H and all ~xH it holds that C(H,~xH)|{i} = R.

For simplicity, we omit the (formal) input (resp. output) of parties with
no input (resp. no output). For instance, in the broadcast specification
BCi we only give the input of (honest) Pi.

4.2. PRELIMINARIES 61

Parallel Composition. The parallel composition of consistency specifi-
cations allows to model the situation where parties have access to multiple
specifications at once. More formally, consider consistency specifications
C(1), . . . , C(`) with input domain D and output domain R.

Definition 15. The parallel composition of C(1), . . . , C(`) is consistency
specification [C(1), . . . , C(`)] with input domain D` and output domain R`
where for every H ⊆ P and all ~xH =

(
(xij)j∈[`]

)
i∈H ∈ D it holds that

C(H,~xH) =
{
~yH ∈ R`H

∣∣∣∣∣ ~yH =
(
(yij)j∈[`]

)
i∈H

∧ ∀j (yij)i∈H ∈ C(j)(H, (xij)i∈H)
}
.

Example 3. The parallel composition of multiple authenticated channels
Authi,j for all i, j ∈ P forms the complete network Auth.

4.2.2 Protocols and Constructions
A protocol allows the parties to construct a new consistency specification.
In each protocol round parties (locally) compute inputs a consistency
specification using their protocol input and outputs from previously in-
voked consistency specifications. At the end of the protocol execution
each party computes its protocol output as a function of its protocol input
and all the outputs it received from invoked specifications.

Deterministic Protocols. A deterministic protocols runs for ` ≥ 0
rounds. In each round r, party Pi uses the deterministic round function
f

(r)
i to compute its input for the round specification C(r) which has input
domain Dr and output domain Rr. At the end of the last round, party
Pi uses its output function gi to compute its protocol output. Denote by
~C = (C(r))r∈1,...,` the tuple of invoked specifications. Then we can define
a deterministic protocol as follows.

Definition 16 ([Mau04]). A deterministic `-round protocol Π for tuple ~C
with input domains D and output domains R consists of round functions

f
(r)
i : D ×R1 × · · · × Rr−1 → Dr ∀i ∈ P ∀r ∈ [`]

and output functions

gi : D ×R1 × · · · × R` → R ∀i ∈ P.

62 CHAPTER 4. CLASSES OF CONSISTENCY SPECIFICATIONS

We explicitly allow zero-round protocols where no consistency spec-
ifications are invoked. By executing the protocol Π using tuple ~C, the
parties achieve a new consistency specification denoted by Π~C. More
formally, the output of Π~C is computed by iteratively applying the round
functions of Π to the input tuple ~xH .

Definition 17. For a protocol Π and the corresponding tuple ~C the pro-
tocol specification Π~C is the following consistency specification, such that
for every H ⊆ P and ~xH = (xi)i∈H ∈ DH

Π~C(H,~xH) =


(yi)i∈H ∈ RH

∣∣∣∣∣∣∣∣∣∣∣

∀r ∈ [`] ∃(xir)i∈H ∈ DHr ∃(yir)i∈H ∈ RHr

∀i ∈ H: xir = f
(r)
i (xi, yi1, . . . , yir−1)

∧ (yir)i∈H ∈ C(r)(H, (xir)i∈H)
∧ ∀i ∈ H yi = gi(xi, yi1, . . . , yi`)


.

The goal of a protocol execution is to achieve consistency guarantees
which are at least as strong as the guarantees of some target specification C.
This is the case, if the consistency guarantees of the protocol specification
Π~C are at least as strong as the ones of the target specification C. As
already argued above, the consistency guarantee becomes stronger, as
the set of possible outputs becomes smaller. We therefore say that a
protocol Π constructs a consistency specification C from the tuple ~C, if
the set of possible outputs of the protocol specification Π~C(H,~xH) for
arbitrary inputs H,~xH is a subset of the corresponding set of possible
outputs C(H,~xH) of the target specification C.

Definition 18. A protocol Π constructs a specification C from the tuple
~C if we have for all H ⊆ P and all ~xH Π~C(H,~xH) ⊆ C(H,~xH).

Often, one is interested in a broader notion of construction where
specifications from a set C may be invoked arbitrarily often during a
protocol execution.

Definition 19. A specification C can be constructed from a set of specifi-
cations C, denoted by C −→ C, if there exists a tuple ~C of specifications
from C (parallel composition allowed) which allows to construct C.

The above definition naturally extends to a construction notion among
sets of consistency specifications: A set of consistency specifications C′ is

4.2. PRELIMINARIES 63

constructible from C, denoted by C −→ C′ if all C ∈ C′ can be constructed
from C. We note that this notion of construction is transitive in the
straight-forward sense.

Lemma 13. Let C1,C2,C3 be sets of consistency specifications for P.
Suppose C1 −→ C2 and C2 −→ C3. Then C1 −→ C3.

Proof. For any C3 ∈ C3 exists a tuple ~C2 of specifications in C2 such that
~C2 −→ C3. And for any C ∈ ~C2 exists a tuple ~C1 such that ~C1 −→ C. Now
consider the protocol for ~C2 −→ C3. Each time the parties want to invoke
a C ∈ ~C2, they could instead execute the protocol which constructs C.
This results in an overall protocol which constructs C3 from specifications
in C1.

Probabilistic Protocols. In a probabilistic protocol, the parties may
additionally use local randomness during the protocol execution. Formally,
probabilistic protocols are modeled as distributions over deterministic
protocols.

Definition 20. A probabilistic protocol `-round Π for tuple ~CΠ with
input domains D and output domains R is a random variable (for some
distribution) over a set of deterministic protocols of at most `-rounds for
tuple ~CΠ with input domains D and output domains R.

Note that our definition allows for protocols where parties have access
to correlated randomness. We denote by Π~CΠ the random variable over
the protocol specifications for Π and ~CΠ. A protocol constructs a target
specification C within ε if with probability strictly larger than 1− ε Π~CΠ
provides better consistency guarantees than C.

Definition 21. A probabilistic protocol Π for tuple ~CΠ constructs C
within ε if

min
H,~xH

P
(
Π~CΠ(H,~xH) ⊆ C(H,~xH)

)
> 1− ε.

A construction is called perfect if ε = 0. A specification C can be con-
structed within ε from a set C, denoted by C

ε−→ C, if there exists a tuple
~CΠ from C which allows to construct C within ε.

Note that any deterministic construction is a perfect construction.

64 CHAPTER 4. CLASSES OF CONSISTENCY SPECIFICATIONS

4.3 Impossibility Proofs
In this section, we consider a generalized version of so called “scenario”-
proofs (see, e.g., [FLM85]). This proof technique, a special type of proof
by contradiction, is normally used to prove that a specification, e.g.,
broadcast, cannot be constructed from authenticated channels within
some ε. Here, we extend “scenario”-proofs to the setting where parties
are given additional setup. This means we want to prove statements
of the form “There is no construction of a specification C from given
specifications C within ε” where C is (an arbitrary) set of specification
which contains at least the complete network of authenticated channels.

The general proof strategy is as follows. Assume that we want to
prove that C cannot be constructed from C within 1

k where Auth ∈ C.
The corresponding “scenario”-proof works as follows.

Towards a contradiction, assume that there exists a protocol Π which
allows to construct C from C within 1

k . This implies that for each party Pi
and for each input xi, there exists a corresponding (probabilistic) protocol
system Πxi

i which executes the protocol part of Pi for input xi1. The
protocol system of a party has for any other party an interface where it
expects to communicate with the other parties’ protocol system. This
models that parties are pair-wise connected via authenticated channels.
If the parties are given additional specifications in C (e.g., broadcast
channels for some parties) during the protocol execution, this is modeled
via a system R that provides the functionality of this specification. In
this case, the protocol systems have an additional interface where they
expect to be connected to R.

Next, the assumed protocol systems are connected to form a specific
configuration S. We consider the output (vector) of selected systems in S
which we denote by the random variable Y. Our goal is to show that the
properties of Y contradict the assumption that there exists a construction
of C within 1

k .
We use k different scenarios to obtain conditions on the outcome

of Y. Each scenario describes S as a protocol execution among three
parties where exactly one of them is dishonest. With the exception of
two systems (for the two honest parties) all parts of S are considered to
be the ‘attack strategy’ of the dishonest party. The initial assumption

1Such a system can be instantiated, for example, as an interactive Turing machine.

4.3. IMPOSSIBILITY PROOFS 65

implies that the outputs of the two honest parties in this scenario must
satisfy some consistency guarantee with probability strictly more than
1− 1

k . This directly translates into a condition on Y. Namely, one finds a
set Ai such that P(Y ∈ Ai) > 1− 1

k . The k scenarios are chosen such that
the intersection of all Ai’s is empty and therefore P(Y ∈

⋂k
i=1 Ai) = 0.

In this case, the following lemma implies that for at least one Ai, it must
hold that P(Y ∈ Ai) ≤ 1 − 1

k , thus contradicting the fact that for all
i, P(Y ∈ Ai) > 1− 1

k (as required by the assumption of a construction
within ε = 1

k).

Lemma 14. Let A1, . . . , Ak be sets with non-empty union A =
⋃k
i=1 Ai

and let Y be a random variable over some set U ⊇ A such that P(Y ∈⋂k
i=1 Ai) = 0. Then mini P(Y ∈ Ai) ≤ 1− 1

k .

Proof. For convenience we denote for any set B by P(B) the probability
P(Y ∈ B). We denote by B the complement of B in U . Using elementary
set operations and the union bound we get

P(
k⋂
i=1

Ai) = 1− P(
k⋃
i=1

Ai) (4.2)

≥ 1−
k∑
i=1

P(Ai) = 1−
k∑
i=1

(1− P(Ai)) = 1− k +
k∑
i=1

P(Ai).

(4.3)

As the minimum over all P(Y ∈ Ai) is smaller than the average we finally
get

min
i

P(Y ∈ Ai) ≤
1
k

k∑
i=1

P(Ai) ≤
1
k

(
k − 1 + P(

k⋂
i=1

Ai)
)

= 1− 1
k
. (4.4)

4.3.1 Broadcast Impossibility
In this section we prove as the-well known result from [KY84] that broad-
cast cannot be constructed from authenticated channels within 1

3 .

66 CHAPTER 4. CLASSES OF CONSISTENCY SPECIFICATIONS

Lemma 15. [KY84] Auth
1
3
6−→ BC1.

Proof. Towards a contradiction, let us assume that there exists a protocol
Π which allows to construct BC1 from Auth within 1

3 . Then there exist
protocol systems Π0

1,Π1
1,Π2,Π3. Note that only the system of P1 has an

input. Each of these systems has two interfaces where it expects to be
connected to the systems of the other two parties.

We consider the configuration S in Figure 4.1a where all four systems
are arranged in a circle. The random variable Y describes the output
behavior of systems Π2 and Π3. This means that Y maps to bit-tuples
where the first component represents the output of Π2.

We examine the distribution of Y using different protocol execution
scenarios. First, we consider the scenario where P2 and P3 are honest
while P1 is dishonest, i.e., H = {P2, P3}. In this scenario, consistency
of broadcast ensures that the outputs of P2 and P3 are with probability
strictly larger than 1− 1

3 the same (independently of the behavior of P1).
In the configuration S, this corresponds to the scenario where the system
of P1 consists of the two left-most systems (cf. Figure 4.1b). This implies
that Y is in A1 = {(0, 0), (1, 1)} with probability strictly larger than 1− 1

3 .
Next, we consider the scenario where P1 and P3 are honest (H = {P1, P3})
and P1 has input 1. In our configuration S, we can perceive the two systems
on the top as the system of the dishonest P2 (cf. Figure 4.1c). This implies
(validity of broadcast) that P(Y ∈ A2) > 1 − 1

3 for A2 = {(0, 1), (1, 1)}.
Finally, we consider the case H = {P1, P3} where P1 has input 0. In our
configuration S, we can perceive the two systems at the bottom as the
system of the dishonest P3 (cf. Figure 4.1d). This implies (validity of
broadcast) that P(Y ∈ A3) > 1− 1

3 for A3 = {(0, 0), (0, 1)}.
We observe that A1 ∩ A2 ∩ A3 = ∅ and thus P(Y ∈

⋂3
i=1 Ai) = 0.

This implies with Lemma 14 that for at least one Ai, P(Y ∈ Ai) ≤ 1− 1
3 .

This is a contradiction to the fact that P(Y ∈ Ai) > 1− 1
3 for all Ai, as

required by the definition of a construction within ε = 1
3 . Thus, there

exists no ε-construction of broadcast for ε ≤ 1
3 .

4.3.2 Strong Broadcast Impossibility
In this section we prove a stronger impossibility for the construction of
broadcast. That is, we show that broadcast channels, e.g. BC1, cannot

4.3. IMPOSSIBILITY PROOFS 67

Π1

Π1

Π2

Π3

0

1

(a) Configuration S

Π1

Π1

Π2

Π3

0

1

(b) P1 dishonest
Y ∈ {(0, 0), (1, 1)}

Π1

Π1

Π2

Π3

0

1

(c) P2 dishonest
Y ∈ {(0, 1), (1, 1)}

Π1

Π1

Π2

Π3

0

1

(d) P3 dishonest
Y ∈ {(0, 0), (0, 1)}

Figure 4.1: The configuration S and the three scenarios

be constructed within 1
3 even if all other broadcast channels are available.

Note that the result implies Lemma 15.

Theorem 3. {Auth,BC2,BC3}
1
3
6−→ BC1.

Proof. To prove this result we use the “scenario”-proof technique intro-
duced above. Assume therefore that there exists a probabilistic protocol
Π which allows to construct BC1 from {Auth,BC2,BC3} within ε = 1

3 .
Thus there exist protocol systems Πb

1,Π2,Π3 where b denotes the input bit
of P1. Additionally there exists a system [BC2,BC3] which corresponds
to the given broadcast channels for P2 and P3.

We first show how to construct a system BC from system [BC2,BC3].
This system BC will be used to build the configuration S, rather than
[BC2,BC3] directly. System BC is essentially the same as [BC2,BC3]

68 CHAPTER 4. CLASSES OF CONSISTENCY SPECIFICATIONS

except that the interface of P1 is cloned.
System BC can be built from [BC2,BC3] in three different ways. First,

one can build it by adding a system e1 to the P1-interface of [BC2,BC3]
which relays the outputs of this interface to the two P1-interfaces of
BC. Second, one can build BC from [BC2,BC3] by adding a system
e2 to the P2-interface of [BC2,BC3]. System e2 relays any input at
the BC P2-interface to [BC2,BC3]. Any output at the P2-interface of
[BC2,BC3] is relayed to the BC P1-interface and the BC P2-interface of
e2. Analogously, one can build BC from [BC2,BC3] by adding a system e3
to the P3-interface of [BC2,BC3]. In summary we have that the systems
BC, e1[BC2,BC3], e2[BC2,BC3], and e3[BC2,BC3] are all equivalent,
i.e., the have exactly the same input/output behavior.

We consider now the configuration S in Figure 4.2a where the four
protocol systems Π0

1, Π1
1, Π3, and Π2 form a ring and are all connected

to BC. We, denote by Y of systems Π2 and Π3. It follows from the
above argumentation that systems Π2 and Π3 in the configurations in
Figures 4.2b-4.2d must have the same output behavior Y as the systems
Π2 and Π3 in configuration S.

We examine the distribution of Y using different protocol execution
scenarios. First, we consider the scenario where P1 is dishonest, i.e,
H = {P2, P3}. The consistency of BC1 implies that with probability
strictly larger 1 − 1

3 the outputs of P2 and P3 are the same. In this
scenario P1 could use a system consisting of the three left-most systems
in Figure 4.2b. The consistency of broadcast thus implies for S that
P(Y ∈ A1) > 1 − 1

3 for A1 = {(0, 0), (1, 1)}. Next, we consider the
scenario H = {P1, P3} where P1 has input 1. Here, dishonest P2 could
run the top-three systems in Figure 4.2c. The validity of BC1 thus implies
that P(Y ∈ A2) > 1− 1

3 for A2 = {(0, 1), (1, 1)}. Finally, we consider the
scenario H = {P1, P2} where P1 has input 0. Here, dishonest P3 could
run the bottom-three systems in Figure 4.2d. The validity of BC1 thus
implies that P(Y ∈ A3) > 1− 1

3 for A3 = {(0, 0), (0, 1)}. The intersection
A1 ∩A2 ∩A3 is empty and hence P(Y ∈ A1 ∩A2 ∩A3) = 0. This implies
with Lemma 14 that for at least one Ai, P(Y ∈ Ai) ≤ 1 − 1

3 . This is a
contradiction to the fact that P(Y ∈ Ai) > 1− 1

3 for all Ai as required
by the definition of a construction within ε = 1

3 . This implies that there
cannot exist a construction of broadcast BC1 from {Auth,BC2,BC3}
within ε = 1

3 .

4.4. CLASSIFICATION OF SPECIFICATIONS 69

Π1

Π1

Π2

Π3

BC

0

1

(a) configuration S

Π1

Π1

Π2

Π3

[BC2,BC3]e1

0

1

(b) P1 dishonest
Y ∈ {(0, 0), (1, 1)}

Π1

Π1

Π2

Π3

[BC2,BC3]

e2

0

1

(c) P2 dishonest
Y ∈ {(0, 1), (1, 1)}

Π1

Π1

Π2

Π3

[BC2,BC3]

e3

0

1

(d) P3 dishonest
Y ∈ {(0, 0), (0, 1)}

Figure 4.2: The configuration S and the three scenarios.

4.4 Classification of Specifications
This section considers the classification of (sets of) consistency specifica-
tions according to their closures. The closure of a consistency specification
set C with respect to a consistency specification set T contains all specifi-
cations in T which can be constructed from C.

Definition 22. The (relative) closure of C with respect to T is defined
as 〈C〉T := {C ∈ T | C −→ C} .

The closure is monotone, i.e., for C′ ⊆ C it holds that 〈C′〉T ⊆ 〈C〉T.
We will omit T, if clear from the context, and simply write 〈C〉. To classify

70 CHAPTER 4. CLASSES OF CONSISTENCY SPECIFICATIONS

a collection S = {C1, . . . ,Ck} of consistency specification sets with respect
to T one can consider the different closures of the sets in S.

Definition 23. A classification of a collection S of consistency specifica-
tion sets with respect to T is the set {〈C〉T | C ∈ S}. Two sets C,C′ ∈ S
realize the same class if 〈C〉T = 〈C′〉T.

Remark. For simplicity, we classify specifications according to perfect
constructions, i.e., for constructions within ε = 0. However, the classifica-
tion presented in Section 4.4.1 would remain the same even if one allows
for constructions within ε ≤ 1

3 .

4.4.1 Classification of Single-Input Specifications
The goal of this section is to provide a motivating example of a consistency
specifications classification. For this purpose we consider specifications
for three parties P = {P1, P2, P3} where P1 has a binary input and the
other two parties have binary outputs. We denote the set of all those
specifications by T1. For simplicity, we will omit the formal inputs (resp.
outputs) of parties which have no input (resp. no output). For example,
we will write b ∈ C({P1, P2} , b) where b is the input of P1.

We denote by B̂C1 ∈ T1 the broadcast channel for P1 where (in
contrast to BC1) party P1 gets no output. More formally, we have

B̂C1(H,~xH) =
{
~yH ∈ {0, 1}H

∣∣∣∣∣ ∃v
(

(∀j ∈ H \ {1} : ~yH|{j} = v)

∧ (1 ∈ H ⇒ v = ~xH|{1})
) }

.

for all H ∈ {P1, P2, P3} and all input vectors ~xH .
For the classification we assume that parties are pairwise connected

by authenticated channels and have additionally access to a subset of
specifications from T1. Formally we thus consider a classification of the
collection S := {C ∪Auth | C ⊆ T1} with respect to T1 where Auth is the
set of all authenticated channels for P . We will show that T1 is divided into
two classes. First, we have the class 〈Auth〉 consisting of all specifications
which can be constructed from authenticated channels. Second, we have
the complement T1 \ 〈Auth〉 which consists of all specifications which
allow to construct broadcast B̂C1 given authenticated channels.

4.4. CLASSIFICATION OF SPECIFICATIONS 71

Theorem 4. Given authenticated channels and a set of specifications
C ⊆ T1 one can either construct everything or just specifications which
can be constructed from authenticated channels. In other words either
〈C ∪Auth〉 = 〈{B̂C1}〉 = T1 or 〈C ∪Auth〉 = 〈Auth〉.

Closure of Authenticated Channels. A sufficient and necessary con-
dition for C ∈ 〈Auth〉 can be found by looking at the possible outputs of
C in the case of two honest parties. To this end we define the following
five sets of binary tuples.

MC = {(y2, y3) | (y2, y3) ∈ C({P2, P3})}

M
(b)
2,C = {(y2, y3) | y2 ∈ C({P1, P2} , b)} ∀b ∈ {0, 1}

M
(b)
3,C = {(y2, y3) | y3 ∈ C({P1, P3} , b)} ∀b ∈ {0, 1}

A specification C is in 〈Auth〉 if and only if

M
(0)
2,C ∩MC ∩M

(1)
3,C 6= ∅ and M

(1)
2,C ∩MC ∩M

(0)
3,C 6= ∅. (4.5)

We prove this condition in the following two lemmata.

Lemma 16. A specification C ∈ T1 can be constructed from authenticated
channels, i.e., C ∈ 〈Auth〉, if condition (4.5) holds.

Proof. To construct C from authenticated channels consider the following
protocol Π. First, party P1 sends its input bit to the other parties which
exchange the received bits (cf. Figure 4.3). The output of P2 is g2(b2, b2,3)
for a function g2 : {0, 1}2 → {0, 1} where b2 and b2,3 are the bits received
from P1 and P3. Analogously, P3 outputs g3(b3,2, b3). As we have

M
(0)
2,C ∩MC ∩M

(1)
3,C 6= ∅ and M

(1)
2,C ∩MC ∩M

(0)
3,C 6= ∅.

we can define g2 and g3 as follows. For any bit b ∈ {0, 1} let(
g2(b, b), g3(b, b)

)
∈ C({P1, P2, P3} , b) (4.6)

and (
g2(b, 1−b), g3(b, 1−b)

)
∈M (b)

2,C ∩MC ∩M
(1−b)
3,C . (4.7)

Note that for any b ∈ {0, 1} we have C({P1, P2, P3} , b) ⊆M (b)
2,C∩MC∩M

(b)
3,C

and thus M (x)
2,C ∩MC ∩M

(y)
3,C 6= ∅ for any x, y ∈ {0, 1}. Consider now the

72 CHAPTER 4. CLASSES OF CONSISTENCY SPECIFICATIONS

P1

b

P2

g2(b2, b2,3)

P3

g3(b3,2, b3)

b2 b3

b3,2

b2,3

Figure 4.3: Protocol for Lemma 16.

following cases. If everyone is honest, we have b = b2 = b3 = b2,3 = b3,2.
The output of P2 and P3 is thus (g2(b, b), g3(b, b)) ∈ C({P1, P2, P3} , b).
For H = {P1, P2} we have b2 = b and the output of P2 is there-
fore g2(b, b2,3) ∈ (M (b)

2,C ∩ MC ∩ M
(b2,3)
3,C)|P2 . Thus by the definition of

M
(b)
2,C it holds that g2(b, b2,3) ∈ C({P1, P2} , b). For H = {P1, P3} it

similarly holds that b3 = b and g3(b3,2, b) ∈ C({P1, P3} , b). If H =
{P2, P3}, it holds that b2 = b3,2 and b3 = b2,3. The output of the par-
ties is therefore (g2(b2, b3), g3(b2, b3)) ∈ M

(b2)
2,C ∩ MC ∩ M

(b3)
3,C and thus

(g2(b2, b3), g3(b2, b3)) ∈ MC = C({P2, P3}). All the other cases follow
directly from the monotonicity of C. The protocol Π therefore constructs
C from authenticated channels.

Next, we show that Condition (4.5) is also necessary for C ∈ 〈Auth〉.

Lemma 17. A specification C ∈ T1 with M
(0)
2,C ∩ MC ∩ M

(1)
3,C = ∅ or

M
(1)
2,C ∩MC ∩M

(0)
3,C = ∅ cannot be constructed from authenticated channels

(within 1
3), i.e., C 6∈ 〈Auth〉.

Proof. We use the proof technique from Section 4.3. Consider a C ∈ T1
withM (b)

2,C∩MC∩M
(1−b)
3,C = ∅ for some b ∈ {0, 1}. Towards a contradiction,

let us assume that there exists a protocol Π which allows to construct
C from Auth within 1

3 . Then there exist systems Π1,Π2,Π3 for parties

4.4. CLASSIFICATION OF SPECIFICATIONS 73

P1, P2, P3. We consider the configuration in Figure 4.4 where all four
systems are arranged in a circle. The random variable Y describes the
output behavior of systems Π2 and Π3. First, consider H = {P1, P3}

Π1 Π2

Π3Π1

b

1−b

(a) P2 dishonest

Π1 Π2

Π3Π1

b

1−b

(b) P1 dishonest

Π1 Π2

Π3Π1

b

1−b

(c) P3 dishonest

Figure 4.4: Corruption Scenarios for Lemma 17.

where P1 has input 1−b (cf. Figure 4.4a). As we assume that the protocol
constructs C, it must hold that Y ∈M (1−b)

3,C . Next, consider H = {P2, P3}
(cf. Figure 4.4b). Here, it must hold that Y ∈ MC. Finally, consider
H = {P1, P2} where P1 has input b (cf. Figure 4.4c). Here, it must
hold that Y ∈M (b)

2,C . We therefore have Y ∈M (b)
2,C ∩MC ∩M

(1−b)
3,C which

is empty by the initial assumption on C. This implies (cf. Lemma 15)
that there is no construction of C from authenticated channels (within
ε ≤ 1

3).

Specifications Equivalent to Broadcast. Observe that broadcast
B̂C1 does not satisfy Condition (4.5), it can thus not be constructed
from authenticated channels. Moreover, any specification in T1 can be
constructed from broadcast.

Lemma 18. For any C ∈ T1,
{

B̂C1

}
−→ C.

Proof. The construction is trivially achieved with the following protocol.
First, P1 broadcasts its input b. Then parties P2, P3 output some fixed
tuple in C({P1, P2, P3} , b).

In the following we will show that any specification in C ∈ T1 \〈Auth〉
in addition to authenticated channels is enough to construct broadcast
B̂C1. This implies that C (in addition of Auth) allows to construct any
specification in T1.

74 CHAPTER 4. CLASSES OF CONSISTENCY SPECIFICATIONS

Recall that any specification C ∈ T1 \ 〈Auth〉 satisfies the condition

M
(0)
2,C ∩MC ∩M

(1)
3,C = ∅ or M

(1)
2,C ∩MC ∩M

(0)
3,C = ∅ (4.8)

This condition implies that any C ∈ T1 \ 〈Auth〉 is equivalent2 to a
C′ ∈ T1 \ 〈Auth〉 with C′({P1, P2, P3} , b) = {(b, b)} for b ∈ {0, 1}. We
can therefore without loss of generality assume that C({P1, P2, P3} , b) =
{(b, b)} for b ∈ {0, 1}. The condition also implies that

2 ≤ |C({P2, P3})| ≤ 3,
C({P1, P2} , 0) 6= C({P1, P2} , 1), and
C({P1, P3} , 0) 6= C({P1, P3} , 1).

The specification C is thus similar to broadcast B̂C1 except that may
offer weaker guarantees. More precisely, C can provide weaker validity
for P2, or weaker validity for P3, or weaker consistency. We describe this
weakening of C by a triple (α, β, γ) in {♦, 0, 1}3 where ♦ means that the
specific component is not weakened at all.

Definition 24. Let α, β, γ ∈ {♦, 0, 1}. The weak cast (α, β, γ)-WC1 is
defined as follows:

• (α, β, γ)-WC1({P1, P2, P3} , b) = {(b, b)}

• (α, β, γ)-WC1({P1, P2} , b) =
{
{b} if b 6= α
{0, 1} if b = α

• (α, β, γ)-WC1({P1, P3} , b) =
{
{b} if b 6= β
{0, 1} if b = β

• (α, β,♦)-WC1({P2, P3}) = {(0, 0), (1, 1)}
(α, β, 0)-WC1({P2, P3}) = {(0, 0), (0, 1), (1, 1)}
(α, β, 1)-WC1({P2, P3}) = {(0, 0), (1, 0), (1, 1)}

Any specification in T1 \ 〈Auth〉 is (equivalent) to a weak cast. For in-
stance, B̂C1 = (♦,♦,♦)-WC1. Another example is (♦,♦, 0)-WC1 which
provides the validity condition of normal broadcast, but offers the weaker
consistency guarantee (♦,♦, 0)-WC1({P2, P3}) = {(0, 0), (0, 1), (1, 1)}.
We observe that not all weak cast are actually in T1 \ 〈Auth〉.

2Two specifications C and C′ are equivalent if {C} −→ C′ and {C′} −→ C.

4.4. CLASSIFICATION OF SPECIFICATIONS 75

Lemma 19. For any x ∈ {♦, 0, 1} and y ∈ {0, 1} the specifications
(x, y, y)-WC1, (y, x, 1−y)-WC1, and (y, y, x)-WC1 are in 〈Auth〉.

Proof. These specifications satisfy Condition (4.5). The statement follows
with Lemma 16.

Next, we show that all other weak cast variants (in addition to Auth)
allow to construct B̂C1. First, we consider weak casts were only the
consistency guarantee is weakened, i.e. we look at (♦,♦, γ)-WC1 for
γ ∈ {♦, 0, 1}. Such a weak cast does not satisfy Condition (4.5) and is in
T1 \ 〈Auth〉 (cf. Lemma 17).

Lemma 20. For any γ ∈ {♦, 0, 1},

Auth ∪ {(♦,♦, γ)-WC1} −→ B̂C1.

Proof. For γ = ♦ we have B̂C1 = (♦,♦,♦)-WC1. For γ 6= ♦ and input bit
b of P1 consider the following protocol. First, P1 sends (b, 1−b) to the other
parties using two (♦,♦, γ)-WC1 invocations. Denote by (b2, c2) (resp.
(b3, c3)) the bits received by P2 (resp. P3). Then P2 and P3 exchange
their bits using authenticated channels where b2,3, c2,3 (resp. b3,2, c3,2)
denote the bits received by P2 (resp. P3). If b2 6= c2, party P2 outputs b2.
Otherwise, if b2,3 6= c2,3, P2 outputs b2,3. Otherwise P2 outputs 0. The
output of P3 is computed analogous. Consider now the following cases.
If everyone is honest, we have b2 = b3 = b and c2 = c3 = 1 − b. The
output of P2, P3 is thus (b2, b3) = (b, b). For H = {P1, P2} we have b2 = b
and c2 = 1− b. The output of P2 is therefore b2 = b. For H = {P1, P3}
we have b3 = b and c3 = 1− b. The output of P3 is therefore b3 = b. If
H = {P2, P3}, we have (b2,3, c2,3) = (b3, c3) and (b3,2, c3,2) = (b2, c2). If
b2 6= b3, we have c2 = c3 as (1−γ, γ) 6∈ (♦,♦, γ)-WC1. It is now easy to
check that P2 and P3 will output the same bit.

Almost all weak-broadcast specifications where all three components
are weakened are in 〈Auth〉 (cf. Lemma 19). The two exceptions are
(0, 1, 0)-WC1 and (1, 0, 1)-WC1. Surprisingly one is able to construct
broadcast from each of them given authenticated channels.

Lemma 21. Both (0, 1, 0)-WC1 and (1, 0, 1)-WC1 (in addition to Auth)
allow to construct B̂C1.

76 CHAPTER 4. CLASSES OF CONSISTENCY SPECIFICATIONS

Proof. With Lemma 20 it is enough to show that one can construct
(♦,♦, 0)-WC1 from (0, 1, 0)-WC1 (respectively that one can construct
(♦,♦, 1)-WC1 from (1, 0, 1)-WC1). We give the proof for the construction
of (♦,♦, 0)-WC1 from (0, 1, 0)-WC1. To this end, consider the following
protocol.

First, P1 sends its bit b to the other parties using an authenticated
channel, where b2 (resp. b3) denote the bit received by P2 (resp. P3). In
the next step P1 sends b over (0, 1, 0)-WC1, where c2 (resp. c3) denotes
the bit received by P2 (resp. P3). Finally, party P2 outputs bit o2 and
party P3 outputs bit o3 where:

o2 =
{

1 if (b2, c2) = (1, 1)
0 otherwise

and

o3 =
{

0 if (b3, c3) = (0, 0)
1 otherwise.

Consider the following cases. If everyone is honest, we have b2 =
c2 = b3 = c3 = b the output of P2, P3 is thus (o2, o3) = (b, b). For
H = {P1, P2} and b = 0 we have (b2, c2) 6= (1, 1) and thus o2 = 0. If
b = 1, we have (b2, c2) = (1, 1) and thus o2 = 1. The case H = {P1, P3}
follows analogously to the case H = {P1, P2}. In the case H = {P2, P3}
the properties of (0, 1, 0)−WC1 imply that (c2, c3) 6= (1, 0). Thus it can
not be that (b2, c2) = (1, 1) and (b3, c3) = (0, 0). The output (o2, o3) is
therefore in (♦,♦, 0)−WC1({P2, P3}).

We observe that any other weak cast in T1 \ 〈Auth〉 trivially allows to
construct (0, 1, 0)-WC1 or (1, 0, 1)-WC1 as it offers stronger consistency
guarantees. This implies together with Lemma 21 that one can construct
B̂C1 from such a weak cast.

Lemma 22. Let C ∈ T1 \ 〈Auth〉, then Auth ∪ {C}→BC1.

Proof. The consistency guarantees of C are strictly stronger than the
ones of either (0, 1, 0)-WC1 or (1, 0, 1)-WC1. This allows to trivially
construct at least one of them from C. Lemma 20 and the transitiv-
ity of (deterministic) constructions imply that Auth ∪ {C}→BC1 (cf.
Lemma 21).

4.5. STRONG SEPARATION RESULTS 77

We note that the availability of authenticated channels is crucial. For
instance, one can show that (♦,♦, 0)-WC1 is strictly weaker than BC1,
i.e., {(♦,♦, 0)-WC1} 6→ BC1.

4.5 Strong Separation Results
In this section we consider specifications for party set P = {P1, P2, P3}
where all inputs and outputs are bit-strings. The goal of this section is to
prove a strong separation between broadcast and authenticated channels.
That is, we present a specification, called XOR-cast, which neither can
be constructed from authenticated channels within a constant ε nor is
sufficient to construct broadcast within a constant ε.

4.5.1 XOR-Cast
XOR-cast takes a bit bi from Pi and a bit bj from Pj as input. If all
parties behave honestly, the value of bi⊕bj should be output by all parties.
If one of the parties Pi, Pj is dishonest, the honest parties should output
the same value. If the third party Pk is dishonest, the remaining parties
should output bi ⊕ bj .

Definition 25. Let Pi, Pj , Pk ∈ P be pairwise distinct parties. The
XOR-cast specification XCi,j for Pi and Pj is defined as

XCi,j(H,~xH) =
{
~y ∈ {0, 1}H

∣∣∣∣∣ ∃v
(
(∀` ∈ H : ~yH|{`} = v)

∧ (i, j ∈ H ⇒ v = ~xH|{i} ⊕ ~xH|{j})
)} .

for all sets of honest parties H and all honest inputs ~xH .

We first prove that XOR-cast cannot be constructed from the network
of authenticated channels.

Lemma 23. For all i 6= j ∈ {1, 2, 3} {Auth}
1
4
6−→ XCi,j.

Proof. Without loss of generality, we show the statement for XC1,2 using
the “scenario”-proof technique from Section 4.3. Towards a contradiction,
assume that there exists a protocol allowing to construct XC1,2 from
{Auth} within 1

4 . Then there exist protocol systems Πx1
1 ,Πx2

2 ,Π3 for

78 CHAPTER 4. CLASSES OF CONSISTENCY SPECIFICATIONS

parties P1, P2, P3 where x1 denotes the input bit of P1 and x2 denotes
the input bit of P2. Consider the pentagon configuration S in Figure 4.5
and let Y be the random variable over the output (a, b, c) of the three
left-most systems.

Π3

Π1

Π2

Π1

Π2

0

0

0

1
a

b

c

(a) P1 dishonest
Y ∈ {(0, 0, 0), (0, 0, 1), (1, 1, 0),
(1, 1, 1)}

Π3

Π1

Π2

Π1

Π2

0

0

0

1
a

b

c

(b) P2 dishonest
Y ∈ {(0, 0, 0), (0, 1, 1), (1, 0, 0),
(1, 1, 1)}

Π3

Π1

Π2

Π1

Π2

0

0

0

1
a

b

c

(c) P3 dishonest, first strategy
Y ∈ {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0)}

Π3

Π1

Π2

Π1

Π2

0

0

0

1
a

b

c

(d) P3 dishonest, second strategy
Y ∈ {(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}

Figure 4.5: The configuration S and the four scenarios.

We examine the distribution of Y using four different protocol execu-
tion scenarios. First, we consider the scenario where P2 and P3 are honest
(H = {P2, P3}) and P2 has input 0. In this scenario, the dishonest P1
could run the three systems in the bottom-left in Figure 4.5a. The outputs
of P2 and P3 must be the same. This implies P(Y ∈ A1) > 1 − 1

4 for
A1 = {(0, 0, 0), (0, 0, 1), (1, 1, 0), (1, 1, 1)}. Next, we consider the scenario
H = {P1, P3} where P1 has input 0 (cf. Figure 4.5b). Here, the outputs
of P1 and P3 must be the same. This implies that P(Y ∈ A2) > 1− 1

4 for
A2 = {(0, 0, 0), (0, 1, 1), (1, 0, 0), (1, 1, 1)}. Next, we consider the scenario
H = {P1, P2} where both P1 and P2 have input 0 (cf. Figure 4.5c). Here,

4.5. STRONG SEPARATION RESULTS 79

the output of P1 must be 0 = 0⊕ 0. This implies that P(Y ∈ A3) > 1− 1
4

for A3 = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0)}. Finally, we consider the
scenario H = {P1, P2} where P1 has input 1 and P2 has input 0 (cf.
Figure 4.5d). Here, the output of P2 must be 1 = 1⊕ 0. This implies that
P(Y ∈ A4) > 1− 1

4 for A4 = {(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.
We observe that the intersection A1 ∩ A2 ∩ A3 ∩ A4 is empty and

hence P(Y ∈
⋂4
i=1 Ai) = 0. This implies with Lemma 14 that for at

least one Ai, P(Y ∈ Ai) ≤ 1 − 1
4 . This is a contradiction to the fact

that P(Y ∈ Ai) > 1 − 1
4 for all Ai as required by the definition of a

construction within ε = 1
4 . Thus no construction of XC1,2 from Auth

exists within 1
4 .

Next, we show that one can perfectly construct XCi,j given the com-
plete network of authenticated channels and a broadcast channel for Pi
or Pj .

Lemma 24. For all i 6= j ∈ {1, 2, 3} {Auth,BCi} −→ XCi,j.

Proof. Let bi be the input of Pi and let bj be the input of Pj and denote
by Pk the third party. Consider the following protocol.

1. Pj sends bj to Pi. Denote by b̂j the bit received by Pi.

2. Pi broadcasts bk := bi⊕ b̂j using BCi. Denote by b̂k the bit received
by Pj and Pk.

3. Pi outputs bk, Pj and Pk both output b̂k.

If at least Pi and Pj are honest we have b̂j = bj and b̂k = bk. All honest
parties will output bk = bi ⊕ bj as required by XCi,j . On the other hand
if H = {Pj , Pk} both honest parties will output b̂k as required by XCi,j .
If H = {Pi, Pk} we have b̂k = bk. Both honest parties will output bk as
required by XCi,j . If at most one party is honest any output is fine, thus
the protocol achieves the construction also in those cases.

Finally, we show that XOR-cast is strictly weaker than broadcast.
Even given all three XOR-casts, one cannot construct a single broadcast
channel.

Lemma 25. For all i ∈ {1, 2, 3} {XC1,2,XC1,3,XC2,3,Auth}
1
3
6−→ BCi.

80 CHAPTER 4. CLASSES OF CONSISTENCY SPECIFICATIONS

Proof. Without loss of generality, we show that one cannot construct BC1
given all XOR-casts within ε ≤ 1

3 . Towards a contradiction, let us assume
that one can construct BC1 given the XOR-casts, i.e.,

{XC1,2,XC1,3,XC2,3,Auth} −→ BC1

within ε ≤ 1
3 . Lemma 24 implies that one can perfectly construct all

XOR-casts given broadcast channels BC2,BC3. This implies that one can
construct BC1 from {BC2,BC3,Auth} within ε ≤ 1

3 , a contradiction to
Lemma 3.

The above lemmas directly imply the following theorem.

Theorem 5. Authenticated channels and broadcast are strongly separated
by XOR-cast.

Auth XC BC

1
4

1
3

perf.perf.

4.5.2 Weak Broadcast
For comparison, we consider weak broadcast which was introduced in
[Lam83]. This specification provides the same consistency guarantees as
broadcast except that validity only holds if all parties are honest.

Definition 26. Let Ps ∈ P. A weak broadcast-channel wBCs for sender
Ps is a ({0, 1} , {0, 1})- consistency specification where for every H ⊆ P
and all ~xH ∈ {0, 1}H it holds that

wBCs(H,~xH) =
{
~yH ∈ {0, 1}H

∣∣∣∣ ∃v ((∀j ∈ H : ~yH|{j} = v)
∧ (H = P ⇒ v = ~xH|{s})

)} .
It was show in [Lam83] that weak broadcast cannot be constructed

from authenticated channels using a deterministic protocol.

Lemma 26. [Lam83] There exists no deterministic r-round protocol Π
which allows for {Auth} −→ wBCi.

4.5. STRONG SEPARATION RESULTS 81

Proof. Without loss of generality, let P1 be the sender. Suppose there
exists a deterministic r-round protocol Π which allows to construct wBC1
from Auth. Then, there exist protocol systems Πx

1 ,Π2,Π3 for parties
P1, P2, P3, where x denotes the input of P1. Choose k > r + 1 as a
multiple of 3 and arrange 4k such systems in a ring as follows: Start with
a system Π0

1 and continue with systems Π2,Π3; each system is connected
via authenticated channels to its predecessor and successor. Now repeat
this pattern going clockwise, until 2k systems have been connected in
this manner. Because k is a multiple of three, the last system in this
arrangement will be a system Π3. Now, restart the pattern from the
end of this arrangement, but instead of Π0

1, use Π1
1. Arrange another 2k

nodes in this manner, thereby closing the ring.
Consider the system Π0

1 at “the top” of the ring. As all systems in the
ring are deterministic the view of Π0

1 after r rounds is the same as if the
system were run in a triangular configuration (where the triangle consists
of Π0

1,Π2,Π3). The validity of weak broadcast implies that the system
Π0

1 must output 0. Similarly, the system Π1
1 at “the bottom” of the ring

must output 1. Now, consider any to adjacent systems in the ring. One
can view the rest of the ring as an attack strategy of a corrupted party.
Thus by consistency of weak broadcast any two adjacent systems must
output the same value. We thus arrive at a contradiction.

On the other hand, the results of [FGH+02] imply that weak broadcast
can be achieved from authenticated channels for any ε > 0.

Lemma 27. [FGH+02] For any ε > 0 {Auth} ε−→ wBCi.

Finally, we show that weak broadcast is separated from broadcast.
More precisely, we show that broadcast allows to construct weak broadcast
while on the other hand broadcast cannot be constructed from weak
broadcast within ε ≤ 1

3 .

Theorem 6. Weak broadcast and broadcast are strongly separated.

The theorem follows from the following two lemmata.

Lemma 28. For all i ∈ {1, 2, 3} {BCi} −→ wBCi.

Proof. For all H and all ~xH it holds that BCi(H,~xH) ⊆ wBCi(H,~xH).
This directly implies {BCi} −→ wBCi.

82 CHAPTER 4. CLASSES OF CONSISTENCY SPECIFICATIONS

Lemma 29. For all i ∈ {1, 2, 3} {wBCi,Auth}
1
3
6−→ BCi.

Proof. We first show that XCi,j for j 6= i is enough to construct wBCi.
The following protocol π allows Pi to weak broadcast its bit b using XCi,j .

1. XCi,j is invoked where Pi inputs b and Pj inputs 0. Denote by
bi, bj , bk the bits the parties Pi, Pj , Pk receive as output from XCi,j .

2. Pi outputs bi, Pj outputs bj and Pk outputs bk.

The properties of XCi,j ensure that honest parties will always output the
same bit, as required by the consistency of wBCi. If at least Pi and Pj
are honest, the output of XCi,j is b = b⊕ 0. The protocol thus achieves
the validity condition required by wBCi.

From Lemma 25 we know that {XCi,j ,Auth}
1
3
6−→ BCi. This implies

that BCi cannot be constructed from {wBCi,Auth} within ε ≤ 1
3 .

4.6 Discussion and Open Problems
In this chapter we have proposed a classification of consistency specifica-
tions according to the consistency guarantees they allow to achieve. As
a motivating example we have given a complete classification of specifi-
cations where a single party can give a binary input. This classification
showed that such a single-input specification can either be constructed
from authenticated channels or is enough to construct broadcast. We
then considered three-party specifications where more than just one party
may have an input. Here, we showed that XOR-cast strongly separates
authenticated channels and broadcast. It is an open problem to find a
complete classification of three-party specifications where parties have
binary inputs and outputs.

Chapter 5

Efficient
General-Adversary
Multi-Party Computation

The content of this chapter is based on [HT13].

5.1 Introduction
In this chapter, we consider MPC in the presence of an active general-
adversary. General adversaries are characterized by an adversary structure
Z which enumerates all possible set of corrupted parties. Compared to
threshold adversaries, general adversaries are more flexible, which is
relevant in particular when the set of parties is not very large.

On the other hand, protocols secure against general adversaries are
typically by orders of magnitude less efficient than protocols for threshold
adversaries. Most threshold protocols communicate poly(n) bits per
multiplication, where general-adversary protocols require |Z| bits which
is typically exponential in n. However, in some situations threshold
protocols can not provide the necessary flexibility and one must one
general adversary protocols. In the design of general adversary protocols
the concrete communication complexity is therefore highly relevant. For

84 CHAPTER 5. EFFICIENT GENERAL-ADVERSARY MPC

Setting Cond. Bits / Mult. Reference
passive perfect Q2 |Z| · poly(n) [Mau03]
active perfect Q3 |Z|3 · poly(n) [Mau03]
active perfect Q3 |Z|2 · poly(n) our result
active unconditional Q2 |Z|3 · poly(n, κ) [Mau03]/[HMZ08]
active unconditional Q3 |Z|2 · poly(n, κ) [PSR03]
active unconditional Q2 |Z| · poly(n, κ) our result

Table 5.1: Communication complexity of different protocols

example for n = 25, |Z| is expected to be around one million, and a
protocol communicating |Z| · poly(n) might be acceptable, whereas a
protocol communicating |Z|3 · poly(n) might be useless.

5.1.1 Contributions
In the statistically-secure model, one can tolerate at most adversary
structures satisfying Q2(P,Z). The most efficient protocol known to date,
which is also optimal in terms of resilience, requires |Z|3 · poly(n, κ) bits
of communication (where κ is the security parameter) [Mau03, HMZ08].
There exists a protocol with communication complexity of |Z|2 ·poly(n, κ)
[PSR03]. But this results is non-optimal in terms of resilience, as it
tolerates only adversaries satisfying Q3.

Using a new approach for multiplication, we construct a protocol com-
municating |Z| · poly(n, κ) bits and tolerating Q2 adversary structures.
This protocol is optimal both in terms of overall efficiency and resilience.
We stress that even with cryptographic security, Q2 is necessary and com-
plexity linear in |Z| is required at least with respect to overall complexity
of computation and communication (see [Hir01]).

Furthermore, we present a perfectly secure protocol (with no error
probability) with communication complexity of |Z|2 ·poly(n). It is optimal
in terms of resilience (Q3) and also the most efficient protocol up to date
in the model with perfect security.

We refer to Table 5.1 for an overview of the communication complexity
of our protocols.

5.2. PRELIMINARIES 85

5.2 Preliminaries
We refer to Section 1.1 for a short introduction to secure multi-party
computation in general. This section provides additional preliminaries for
the case of general adversaries.

Parties and Computation. In this chapter we consider a set P of n
parties which want to compute a function f over some finite field F. The
function is specified by a circuit C consisting of input, output, random,
addition, and multiplication gates.

The parties are connected by a complete network of secure channels
and have access to authenticated broadcast channels. We note that the
broadcast channels can be emulated by the parties (see e.g. [FM98] or
[PW96]).

Adversary and Adversary Structure. We consider an unbounded
static active adversary A. The corruption choice is limited by means of
an adversary structure Z = {Z1, . . . , Z`} ⊆ 2P , i.e. all corrupted parties
must be part of an adversary set in Z. We denote the chosen set by
Z∗. Note that Z∗ is not known to the honest parties and is solely used
for ease of notation. We say that Z satisfies the Qk(P,Z) property if
∀Z1, . . . , Zk ∈ Z P 6⊆ Z1 ∪ · · · ∪ Zk.

Security. A protocol is Z-secure if anything the adversary achieves
during the execution of the protocol can be achieved in the ideal world as
well. More precisely, for every adversary in the real world there exists an
adversary in the ideal world such that both the information the adversary
gets and the output of honest parties are statistically indistinguishable for
perfect security respectively statistically close for unconditional security.

The main result from [HM97] states that Q3(P,Z) resp. Q2(P,Z)
are the necessary and sufficient conditions for the existence of perfectly
resp. unconditionally Z-secure protocols considering active adversaries.

For simplicity we assume that all messages sent during the execution
of Π are from the right domain. If a party receives a message where this
is not the case, he replaces it with an arbitrary element from the right
domain. If a party receives an unexpected message, he ignores it.

86 CHAPTER 5. EFFICIENT GENERAL-ADVERSARY MPC

5.3 Perfect Protocol
In this section we present a perfectly Z-secure protocol for an arbitrary
adversary structure Z satisfying the Q3 property. The communication
complexity of the protocol is quadratic in |Z|. The efficiency gain is due to
an improved multiplication protocol. The sharing is (up to presentation)
the same as in [Mau03].

5.3.1 Secret Sharing
Secret sharing allows a party to distribute a secret value among the party
set, such that only qualified subsets of parties are able to reconstruct it.
The secret sharing used for our protocol is based on the one from [Mau03]
/ [BFH+08]. It is characterized by a sharing specification S = (S1, . . . , Sh),
which is a tuple of subsets of P.

Definition 27. A value s is shared with respect to sharing specification
S = (S1, . . . , Sh) if the following holds:

a) There exist shares s1, . . . , sh such that s =
∑h
q=1 sq

b) Each sq is known to every (honest) parties in Sq

We denote the sharing of a value s by [s] and use [s]q as notation
for sq, the q-th share. A sharing specification S = (S1, . . . , Sh) is called
Z-private if for every Z ∈ Z there is an S ∈ S such that Z ∩ S = ∅.
A sharing specification S = (S1, . . . , Sh) and an adversary structure Z
satisfy Qk(S,Z) if S 6⊆ Z1 ∪ · · · ∪ Zk ∀Z1, . . . , Zk ∈ Z S ∈ S. If S is
Z-private, a sharing [s] does not leak information to the adversary, as all
shares known by the adversary are statistically independent of s. The
parties can compute a sharing of any linear combination of shared values
(with respect to a sharing specification S) by locally computing the linear
combination of their shares. This property is called the linearity of the
sharing. The following protocol Share allows a dealer PD to correctly
share value s among the parties in P.

5.3. PERFECT PROTOCOL 87

0: The dealer PD takes s as input.
1: PD splits s into random shares s1, . . . , s|S| subject to s =

∑|S|
q=1 sq.

2: for all q ∈ {1, . . . , |S|} do
3: PD sends sq to every party in Sq.
4: Each party in Sq forwards the received value to each party in Sq.
5: Each party in Sq checks that the received values are all the same

and broadcasts OK, or NOK accordingly.
6: If a party in Sq broadcast NOK, the dealer broadcasts sq and

the parties in Sq take this value (resp. some default value if the
dealer does not broadcast) as share. Otherwise every party in Sq
takes the value it received in Step 3 as share.

7: end for
8: The parties in P collectively output [s].

Protocol Share(P,Z, S, PD, s) [Mau03]

Lemma 30. For any adversary structure Z protocol Share(P,Z,S, PD, s)
securely computes a sharing [s′]. For honest PD it holds that s′ = s. The
protocol communicates at most |S|(n2 + n) log |F| bits and broadcasts at
most |S|(log |F|+ n) bits.

Proof. Correctness: For each sq either all the honest parties in Sq hold
the same value after Step 3, or one of them complains and they receive
a consistent value in Step 6. Hence the protocol outputs a (consistent)
sharing [s′]. If the dealer is honest he is able to ensure in Steps 3 and 6
that the honest parties use the intended value for sq such that s = s′.

Privacy: Let the dealer be honest, as otherwise secrecy is trivially
fulfilled. All a party learns beyond his designated output are values
broadcast in Step 6. However this does not violate secrecy as these values
are already known to the adversary (from Step 3).

Complexity: For each share at most n+n2 values are sent and at most
n+ log |F| bits broadcast.

For publicly known value s the parties can invoke DefaultShare to get
a sharing [s] without having to communicate.

0: Every party takes s as input.

Protocol DefaultShare(P,Z, S, s)

88 CHAPTER 5. EFFICIENT GENERAL-ADVERSARY MPC

1: The share s1 is set to s and all other shares are set to 0.
2: The parties in P collectively output [s].

Lemma 31. DefaultShare(P,Z,S, s) securely computes a sharing [s]
where s is a publicly known value. The protocol does not communicate.

Proof. Correctness: In Step 1 every honest party in Sq takes the same
value for share sq. As the sum of all shares is s, the protocol outputs a
consistent sharing [s].

Privacy: During the protocol no communication occurs, hence the
adversary does not obtain new information.

The protocol ReconstructShare allows the reconstruction of a share [s]q
to the parties in some set R. This implies that the parties can reconstruct
a shared value [s] by invoking ReconstructShare for each share.

0: The parties in Sq take the share [s]q as input.
1: Every party Pi in Sq sends [s]q to every party in R.
2: For each party Pj ∈ R let vj,i be the value received from Pi. Then
Pj outputs some value vj such that there exists a Z ∈ Z with
vj,i = vj for all Pi ∈ Sq \ Z.

Protocol ReconstructShare(P,Z, S, [s]q, R)

Lemma 32. If Sq and Z satisfy Q2(Sq,Z), the protocol ReconstructShare
securely reconstructs the share [s]q to the parties in R, such that every
(honest) party outputs [s]q. The protocol communicates at most n2 log |F|
bits.

Proof. Correctness: In Step 1 all honest parties will send the same value
[s]q, which is a suitable choice for vj for an (honest) party Pj ∈ R in Step
2. For the sake of contradiction suppose there exist two values v1 6= v2
with corresponding Z1, Z2 ∈ Z such that the condition of Step 2 holds
for both of them. Hence (Sq \ Z1) ∩ (Sq \ Z2) = ∅ and thus Sq ⊆ Z1 ∪ Z2
which contradicts Q2(Sq,Z). Therefore every honest party outputs the
value [s]q.

Privacy: The adversary learns at most [s]q (if a malicious party is
part of R).

Complexity: Each party in Sq sends his value to at most n parties.

5.3. PERFECT PROTOCOL 89

0: The parties in P take collectively [s] as input.
1: ∀q ∈ {1, . . . , |S|} protocol ReconstructShare(P,Z, S, [s]q, R) is

invoked.
2: The parties in R locally sum up the obtained shares and output the

sum s.

Protocol Reconstruct(P,Z, S, [s], R) [Mau03]

Lemma 33. If S and Z satisfy Q2(S,Z) and [s] is a sharing of the value
s, then Reconstruct(P,Z,S, [s], R) securely reconstructs s to the parties
in R. The protocol communicates at most |S|n2 log |F| bits.

Proof. Correctness and privacy follow directly from Lemma 32. As
ReconstructShare is invoked |S| times the complexity follows as well.

5.3.2 Multiplication
We present a protocol for the perfectly-secure computation of the (shared)
product of two shared values [a] and [b] (with respect to a sharing specifica-
tion S). Along the lines of [Mau03] the fundamental idea of multiplication
is to assign each local product apbq to a party in Sp ∩ Sq, who com-
putes and shares his designated products. The sum of all these sharings
is a sharing of ab as long as no party actively cheated. So each party
is mapped to a collection of local products, formalized by a function
I : [n]→ 2{(p,q) | 1≤p,q≤|Z|} with the constraint that ∀(p, q) ∃! i such that
(p, q) ∈ I(i). W.l.o.g let I(i) := {(p, q) | Pi = minP {P ∈ Sp ∩ Sq}}.

We first show an optimistic multiplication protocol which takes an
additional parameter Z and computes the correct product if the actual
adversary set Z∗ is a subset of Z. In this protocol local products are
assigned to parties in P \ Z only. Clearly this is possible if and only if
for each local product a party in P \ Z holds both involved shares, i.e.
∀Sp, Sq ∈ S : Sp ∩ Sq \ Z 6= ∅. So for each Z ∈ Z let IZ be a mapping
as above with the additional constraint that ∀Pi ∈ Z IZ(i) = ∅. Without
loss of generality, let IZ(i) := {(p, q) | Pi = minP {P ∈ Sp ∩ Sq \ Z}}.

0: The parties in P take collectively [a], [b] and Z as input.

Protocol OptimisticMult(P,Z, S, [a], [b], Z)

90 CHAPTER 5. EFFICIENT GENERAL-ADVERSARY MPC

1:
a) Each party Pi ∈ P \ Z (locally) computes his designated

products and shares the sum ci =
∑

(p,q)∈IZ(i) apbq.
b) For each Pi ∈ Z DefaultShare(P,Z, S, 0) is invoked to share

ci = 0.
2: The parties collectively output ([c1], . . . , [cn]) and [c] =

∑n

i=1[ci].

Lemma 34. Let Z ⊆ P such that ∀Sp, Sq ∈ S : Sp ∩ Sq \ Z 6= ∅. Then
the protocol OptimisticMult securely computes sharings [c], ([c1], . . . , [cn]).
If no party in P \ Z actively cheats (in particular, if Z∗ ⊆ Z), then
∀i ci =

∑
(p,q)∈IZ(i) apbq and c = ab. The protocol communicates at most

O(|S|n3 log |F|) bits and broadcasts at most O(|S|(n log |F|+ n2)) bits.

Proof. Correctness: The properties of the sharing protocol guarantee that
the outputs are valid sharings. If none of the parties in P \ Z cheated
actively, it holds for each Pi that ci =

∑
(p,q)∈IZ(i) apbq. The condition

∀Sp, Sq ∈ S : Sp∩Sq\Z 6= ∅ guarantees that ab =
∑n
i=1
∑

(p,q)∈IZ(i) apbq.
Hence it follows that c = ab.

Privacy and Complexity: Follow directly from Lemmas 30 and 31.

As the parties do not know the actual adversary set Z∗, they invoke
OptimisticMult once for each set Z ∈ Z (Step 1 of the Multiplication
protocol). This guarantees that at least one of the resulting sharings is
correct.

By comparing them the parties can determine whether cheating oc-
curred (Step 2 of the Multiplication protocol). If all sharings are equal,
no cheating occurred and any of the sharings can serve as sharing of the
product. Otherwise at least one party cheated. In this case the (honest)
parties can identify him and remove all sharings where he was involved in
computation, as these sharings are potentially tampered (Step 3 of the
Multiplication protocol).

This checking and removing is repeated until all remaining sharing
are equal (and hence correct). As the identification of cheaters does not
reveal any information to the adversary, Multiplication allows the secure
computation of the product of two shared secret values.

5.3. PERFECT PROTOCOL 91

0: Set M = ∅.
1: Invoke OptimisticMult(P,Z, S, [a], [b], Z) to compute

([c(Z)
1], . . . , [c(Z)

n]) and [c(Z)] for each Z ∈ Z.
2: Set ZM := {Z ∈ Z | M ⊆ Z}, fix some Z̃ ∈ ZM and reconstruct the

differences [c(Z̃)]− [c(Z)] ∀Z ∈ ZM .
3: If all differences are zero, output [c(Z̃)] as sharing of the product.

Otherwise let ([d1], . . . , [dn]) := ([c(Z̃)
1], . . . , [c(Z̃)

n]), ([e1], . . . , [en]) :=
([c(Z)

1], . . . , [c(Z)
n]), D := I

Z̃
and E := IZ , where [c(Z̃)]− [c(Z)] 6= 0.

a) Each Pi shares the 2n values di,j =
∑

(p,q)∈D(i)∩E(j) apbq and
ei,j =

∑
(p,q)∈E(i)∩D(j) apbq

b) For each party Pi reconstruct the differences [di]−
∑n

j=1[di,j]
and [ei]−

∑n

j=1[ei,j]. If one of them is non-zero set
M ←M ∪ {Pi} and continue at Step 2.

c) For each (ordered) pair (Pi, Pj) of parties reconstruct the
difference [di,j]− [ej,i]. If it is non-zero, reconstruct [di,j],[ej,i]
and all shares {ap, bq | (p, q) ∈ D(i) ∩E(j)} to find the cheater
P ∈ {Pi, Pj}. Set M ←M ∪ {P} and continue at Step 2.

Protocol Multiplication(P,Z, S, [a], [b])

Lemma 35. If S and Z satisfy Q2(S,Z) the protocol Multiplication
yields a sharing [c] = [ab]. No information is leaked to the adversary.
Multiplication communicates at most O(|S||Z|n3 log |F|+ |S|n5 log |F|) bits
and broadcasts at most O(|S||Z|(n log |F|+ n2) + |S|(n3 log |F|+ n4)) bits.
Proof. Correctness: By invoking OptimisticMult for each Z ∈ Z it holds
for Z∗ that [c(Z∗)] = [ab] (due to Q2(S,Z) ∀Sp, Sq ∈ S : Sp ∩ Sq \Z 6= ∅
holds). If for every Z ∈ ZM the difference in Step 2 is zero, then
[c(Z)] = [ab] ∀Z ∈ ZM (M = ∅ at the beginning). Hence the protocol
terminates successfully outputting a sharing of ab. Otherwise there exists
[c(Z̃)]− [c(Z)] 6= 0 and thus

∑n
i=1[di] 6=

∑n
i=1[ei]. In Step 3a) each party

is supposed to share a partition of his shares. Hence one of the following
cases must occur: There exists a party Pi such that [di] 6=

∑n
j=1[di,j]

or [ei] 6=
∑n
j=1[ei,j]. Or there exists a pair of parties (Pi, Pj) such that

[di,j] 6= [ej,i]. In the first case Pi will be detected as cheater in Step 3b).
In the second case the cheater will be detected in Step 3c). In both cases
M ⊆ P is strictly increased, hence the protocol will terminate after at

92 CHAPTER 5. EFFICIENT GENERAL-ADVERSARY MPC

most n iterations. It holds that M ⊆ Z∗ and thus Z∗ ∈ ZM . Therefore
the correct sharing [c(Z∗)] is always used in Step 2 and the protocol will
output the correct result.

Privacy: By the properties of the sharing scheme and Lemma 34 the
invocation of Share, Reconstruct, OptimisticMult does not violate privacy.
The adversary learns the differences reconstructed in Steps 2 and 3 of
Multiplication, which are all zero unless the adversary cheats. In case of
cheating the reconstructed values depends solely on the inputs of the
adversary and are thus already known to him, thus privacy is not violated.
All values further reconstructed in Step 3c) are known to the adversary
before, as either Pi or Pj is corrupted.

Complexity: Follows from Lemmas 30, 33 and 34 by counting the
number of invocations of the corresponding sub-protocols.

5.3.3 MPC Protocol
Combining Share, Reconstruct, and Multiplication the parties can securely
compute a circuit C over F, where all intermediate values are shared
according to Definition 27.

0: The parties take S := {P \ Z|Z ∈ Z} as sharing specification.
1: For every gate of C being evaluated do the following:

- Input gate for PD: Share(P,Z, S, PD, s) is invoked to share s,
where PD is the input-giving party.

- Linear gate: The linear combination of the corresponding
shares is computed locally using the linearity of the sharing.

- Random gate: Each party shares a random value. The sum of
these values is used as output of the gate.

- Multiplication gate: Multiplication(P,Z, S, [a], [b]) is used to
multiply [a] and [b].

- Output gate: The parties invoke Reconstruct(P,Z, S, [s], R) to
reconstruct the sharing [s] to parties in R.

Protocol MPC(P,Z, C)

Theorem 7. Let P be a set of n parties, C a circuit over F and Z
an adversary structure satisfying Q3(P,Z), then MPC(P,Z, C) perfectly

5.4. UNCONDITIONAL PROTOCOL 93

Z-securely evaluates C. It communicates |C||Z|2 · poly(n, log |F|) bits.

Proof. It is easy to see that S := {P \ Z|Z ∈ Z} is a sharing spec-
ification satisfying Q2(S,Z). Hence by the properties of the sharing
scheme and Lemma 35 the statement follows. The protocol communi-
cates in total O(|C||Z|2n3 log |F| + |C||Z|n5 log |F|) bits and broadcasts
O(|C||Z|2(n log |F|+ n2) + |C||Z|(n3 log |F|+ n4)) bits. Broadcast can be
simulated with the protocol in [FM98], which communicates poly(n) bits
in order to broadcast one bit. This yields the claimed communication
complexity.

5.4 Unconditional Protocol
Our main result is an MPC protocol unconditionally Z-secure for an Q2

adversary structure Z. Its communication complexity is linear in |Z|.
This is the first protocol reaching the optimal lower bound of Ω(|Z|) on
the computational complexity (see Section 5.6).

5.4.1 Information Checking
In the perfect model, Q3 enables the honest parties to securely reconstruct
shares, as it assures that every share is held by enough honest parties.
Here, Q2 only ensures that each share is held by at least one honest party.
Correctness is achieved by the use of information checking, a technique
that prevents (malicious) parties from announcing wrong values (see
[RB89, Bea91, CDD+99, HMZ08]). The following information-checking
protocol is a slight variation of [CDD+99]. It is a three party protocol
between a sender Pi, a recipient Pj and a verifier Pk. The sender Pi
provides Pj with some authentication tag and Pk with some verification
tag, such that Pj later can prove the authenticity of a value s to the
verifier Pk. We assume that each pair Pi, Pk of parties knows a fixed
secret value αi,k ∈ F \ {0, 1}.

Definition 28. A vector (s, y, z, α) is 1-consistent if there exists a poly-
nomial f of degree 1 over F such that f(0) = s, f(1) = y, f(α) = z. We
say a value s is (Pi, Pj , Pk)-authenticated if Pj knows s and some authen-
tication tag y and Pk knows a verification tag z such that (s, y, z, αi,k) is
1-consistent. The vector (y, z, αi,k) is denoted by Ai,j,k(s).

94 CHAPTER 5. EFFICIENT GENERAL-ADVERSARY MPC

Lemma 36. A (Pi, Pj , Pk)-authenticated value s does not leak informa-
tion to Pk.

Proof. The verification tag z is statistically independent of value s.

Lemma 37. Let s be (Pi, Pj , Pk)-authenticated, i.e. (s, y, z, αi,k) is
1-consistent. Then for Pj being able to find an authentication tag y′
for a value s′ 6= s such that (s′, y′, z, αi,k) is 1-consistent is equivalent to
finding αi,k.

Proof. If both (s, y, z, αi,k) and (s′, y′, z, αi,k) are 1-consistent, then also
(s − s′, y − y′, 0, αi,k) is 1-consistent. The corresponding polynomial of
degree 1 is not parallel to the x-axis, as s− s′ 6= 0. Thus it has an unique
root at αi,k = s−s′

s−s′−y+y′ .

Lemma 38. The parties Pj and Pk can locally compute an authenti-
cation and a verification tag of any linear combination of (Pi, Pj , Pk)-
authenticated values (for fixed Pi). This is called the linearity of the
authentication.

Proof. Let sa and sb be (Pi, Pj , Pk)-authenticated with authentication
tags ya, yb and verification tags za, zb and the (fixed) point αi,k and let
L be a linear function. Then L(sa, sb) is (Pi, Pj , Pk)-authenticated with
authentication tag y = L(ya, yb) and verification tag z = L(za, zb). This
works as the polynomials of degree 1 over F form a vector space, hence
(L(sa, sb), L(ya, yb) , L(za, zb), αi,k) is 1-consistent.

Let s be a value known to Pj and Pk. Then these parties can use
the protocol DefaultAuthenticate to (Pi, Pj , Pk)-authenticate s without
communication for arbitrary Pi. Note that Pi does not play an (active)
role in this protocol.

0: Pj , Pk take the value s as input.
1: Pj outputs authentication tag y = s. Pk outputs verification tag
z = s.

Protocol DefaultAuthenticate(Pi, Pj , Pk, s)

Lemma 39. If the value s is known to the honest parties in {Pj , Pk} pro-
tocol DefaultAuthenticate(Pi, Pj , Pk, s) securely (Pi, Pj , Pk)-authenticates
s without any communication.

5.4. UNCONDITIONAL PROTOCOL 95

Proof. Correctness: (s, s, s, αi,k) is 1-consistent for any αi,k.
Privacy and Communication: No communication occurs and the

adversary does not learn new information.

The non-robust protocol Authenticate allows to securely (Pi, Pj , Pk)-
authenticate a (secret) value s.

0: Pi and Pj take the value s as input.
1: Pi chooses random values (y, z) ∈ F such that (s, y, z, αi,k) is

1-consistent and random values (s′, y′, z′) ∈ F such that
(s′, y′, z′, αi,k) is 1-consistent and sends (s′, y, y′) to party Pj and
(z, z′) to party Pk.

2: Pk broadcasts random r ∈ F.
3: Pi broadcasts s′′ = rs+ s′ and y′′ = ry + y′.
4: Pj checks if s′′ = rs+ s′ and y′′ = ry + y′ and broadcast OK or

NOK accordingly. If NOK was broadcast the protocol is aborted.
5: Pk checks if (s′′, y′′, rz + z′, αi,k) is 1-consistent. If yes Pk sends OK

to Pj otherwise he sends (αi,k, z) to Pj , who adjusts y such that
(s, y, z, αi,k) is 1-consistent.

6: Pj outputs y and Pk outputs z.

Protocol Authenticate(Pi, Pj , Pk, s)

Lemma 40. If Pk is honest and s is known to the honest parties in
{Pi, Pj}. Then the protocol Authenticate(Pi, Pj , Pk, s) either securely
(Pi, Pj , Pk)-authenticates s or aborts except with error probability of at
most 1

|F| . In the case of an abort a party in {Pi, Pj} is corrupted. The pro-
tocol communicates at most 7 log |F| bits and broadcasts at most 3 log |F|+1
bits.

Proof. Correctness: If the protocol was aborted, either s′′ 6= rs + s′ or
y′′ 6= ry + y′ meaning Pi is corrupted, or Pj misleadingly accused Pi.
Otherwise, the parties use some (s, y, z, αi,k) as authentication of s. The
probability that (s, y, z, αi,k) is not 1-consistent is |F|−1, as for a fixed r
there is exactly one way to choose y, z such that the inconsistency is not
detected.

Privacy: The verification tag z, the values s′′ and y′′ are statistically
independent of the value s. Also αi,k is sent only to Pj if either Pi or Pk
is malicious.

96 CHAPTER 5. EFFICIENT GENERAL-ADVERSARY MPC

Communication: Seen by counting the number of messages sent or
broadcast during the protocol.

Remark. If the (honest) parties Pi and Pj do not know the same s the
protocol will abort as well.

Assume that Pk knows a candidate s′ for a (Pi, Pj , Pk)-authenticated
value s. If Pj wants to prove the authenticity of s′ (i.e. that s′ = s) the
parties invoke the protocol Verify. If Pk accepts the proof he outputs s′,
otherwise he outputs ⊥.

0: Let Ai,j,k(s) = (y, z, αi,k). Pj takes y as input and Pk takes s′, z as
input.

1: Pj sends y to Pk
2: Pk outputs s′ if (s′, y, z, αi,k) is 1-consistent otherwise ⊥.

Protocol Verify(Pi, Pj , Pk, s′, Ai,j,k(s))

Lemma 41. Assume s is (Pi, Pj , Pk)-authenticated and let Pk be an
honest party knowing s′. If Pj is honest and s′ = s, Pk will output s in
Verify. Otherwise Pk will output ⊥ or s except with error probability of at
most 1

|F|−2 . The protocol communicates at most log |F| bits.

Proof. Correctness: Let Pk be an honest party,let Ai,j,k(s) = (y, z, αi,k)
be consistent with s, i.e. (s, y, z, αi,k) is 1-consistent and assume that
s′ = s. If Pj sends the right y the vector (s′, y, z, αi,k) is 1-consistent and
Pk will output s. Otherwise Pk always outputs ⊥. So assume s′ 6= s.
Then the probability of finding y′ such that the vector (s′, y′, z, αi,k)
is 1-consistent is at most 1

|F|−2 , thus Pk outputs ⊥ except with error
probability of at most 1

|F|−2 .
Privacy and Communication: No information except y is sent.

5.4.2 Unconditional Secret Sharing
Starting from the secret sharing of Section 5.3.1 we construct a sharing
scheme for the Q2 case using the information-checking scheme of the
previous section.
Definition 29. A value s is shared with respect to the sharing specification
S = (S1, . . . , Sh), if the following holds:

5.4. UNCONDITIONAL PROTOCOL 97

a) There exist shares s1, . . . , sh such that s =
∑h
q=1 sq

b) Each sq is known to every (honest) party in Sq

c) ∀Pi, Pj ∈ Sq Pk ∈ P sq is (Pi, Pj , Pk)-authenticated.

We denote the sharing of a value s by [s]. Let [s]q = (sq, {Ai,j,k(sq)}),
where sq is the q-th share and {Ai,j,k(sq)} the set of all associated au-
thentications. As the perfect sharing from Section 5.3.1 this sharing is
linear and does not leak information to the adversary (for a Z-private S).

The following protocol allows a dealer PD to securely share a secret
value s.

0: The dealer PD takes s as input.
1: PD splits s into random shares s1, . . . , s|S| subject to s =

∑|S|
q=1 sq.

2: for all q ∈ {1, . . . , |S|} do
3: PD sends share sq to every party in Sq.
4: ∀Pi, Pj ∈ Sq and ∀Pk ∈ P invoke Authenticate(Pi, Pj , Pk, sq).

If (for fixed q) any Authenticate(Pi, Pj , Pk, sq) was aborted
PD broadcasts sq, the parties in Sq replace there share and
DefaultAuthenticate(Pi, Pj , Pk, sq) is invoked

∀Pi, Pj ∈ Sq ∀Pk ∈ P.
5: end for
6: The parties in P collectively output [s].

Protocol Share(P,Z, S, PD, s)

Lemma 42. For any adversary structure Z protocol Share(P,Z,S, PD, s)
securely computes a sharing [s′] except with error probability of at most

1
|F|n

3|S| and if PD is honest s′ = s. The protocol communicates at most
|S|(7n3 + n) log |F| bits and broadcasts at most |S|((3n3 + 1) log |F|+ n3)
bits.

Proof. Correctness: Assume that PD does not send the same value to
the (honest) parties in Sq (Step 3). In this case at least one invocation
of Authenticate will abort (see Remark 5.4.1) and PD must broadcast
the value. Otherwise all (honest) parties use the same value sq in Step
3. We have to show that every (honest) Pj gets his authentications
Ai,j,k(sq). If all instances of Authenticate do not abort the statement
follows from Lemma 40. Otherwise sq is broadcast and the parties use

98 CHAPTER 5. EFFICIENT GENERAL-ADVERSARY MPC

DefaultAuthenticate resulting in the proper sharing state (c.f. Lemma 39).
Note that a single invocation of Authenticate has an error probability of
at most 1

|F| , so the above upper bound on the error probability follows.
Privacy: We only have to check that broadcasting sq in Step 4 does not

violate privacy. But sq is only broadcast when at least one Authenticate
was aborted. In this case either PD or a party in Sq is malicious, hence sq
is known to the adversary before the broadcast (Lemma 40 and Remark
5.4.1).

Communication: Follows directly by counting the numbers of messages
sent or broadcast (c.f. Lemmas 40 and 39)

If a value is publicly known the party can use DefaultShare to obtain
a sharing of it.

0: Every party takes s as input.
1: The share s1 is set to s and all other shares are set to 0.
2: DefaultAuthenticate(Pi, Pj , Pk, sq) is invoked
∀Sq∀Pi, Pj ∈ Sq ∀Pk ∈ P.

3: The parties in P collectively output [s].

Protocol DefaultShare(P,Z, S, s)

Lemma 43. DefaultShare(P,Z,S, s) securely computes a sharing [s] of
s. The protocol does not communicate.

Proof. The statement follows from Lemmas 31 and 39.

The protocol ReconstructShare allows reconstruction of a share from
some sharing [s] to parties in R ⊆ P . Hence the parties can reconstruct s
by invoking protocol ReconstructShare for each share of [s].

0: The parties in Sq take collectively [s]q = (sq, {Ai,j,k(sq)}) as input.
1: Every party Pj in Sq sends sq to every party in R.
2: for all Pj ∈ Sq, Pk ∈ R do
3: Invoke Verify(Pi, Pj , Pk, s(j)

q , Ai,j,k(sq)) ∀Pi ∈ Sq where s(j)
q is

the value received by Pk from Pj in Step 1. If Pk output s(j)
q in

Protocol ReconstructShare(P,Z, S, [s]q, R)

5.4. UNCONDITIONAL PROTOCOL 99

each invocation he accepts it as value for sq.
4: end for
5: Each Pk outputs some value he accepted in Step 3 (or ⊥ if never

accepted a value).

Lemma 44. Assume Sq and Z satisfy Q1(Sq,Z) and let [s]q be a consis-
tent share. Every honest party in R outputs sq in ReconstructShare except
with error probability of at most 1

|F|−2n|Sq|. The protocol communicates
at most (n3 + n2) log |F| bits and does not broadcast.
Proof. Correctness: As Sq and Z satisfy Q1(Sq,Z) there exists at least
one honest party Pj in Sq, who sends the right value sq to Pk ∈ R in Step
1. Hence every (honest) Pk will accept sq in Step 3 from Pj , as Pj has a
valid authentication for sq from every party in Sq (c.f. Lemma 41). On
the other hand a malicious party does not have a valid authentication for
s′q 6= sq from every party in Sq (one of them is honest!). So no honest
party will accept s′q 6= sq in Step 3 and thus Pk output sq in the last step
except with error probability of at most 1

|F|−2 |Sq| (c.f. Lemma 41). As
there are at most n parties in R the overall error probability follows.

Privacy: Follows from Lemma 41.
Communication: Follows directly by counting the numbers of messages

sent (c.f. Lemma 41)

0: The parties in P take collectively [s] as input.
1: for all q = 1, . . . , |S| do
2: ReconstructShare(P,Z, S, [s]q, R) is invoked.
3: end for
4: The parties locally sum up the shares to obtain and output s.

Protocol Reconstruct(P,Z, S, [s], R)

Lemma 45. Assume S and Z satisfy Q1(S,Z) and let [s] be a sharing
of the value s. Every honest party in R outputs s in Reconstruct except
with error probability of at most 1

|F|−2n
2|S|. The protocol communicates

at most |S|(n3 + n2) log |F| bits and does not broadcast.
Proof. The statement follows directly from Lemma 44, as the parties
invoke the protocol ReconstructShare for each share.

100 CHAPTER 5. EFFICIENT GENERAL-ADVERSARY MPC

5.4.3 Multiplication
We present a protocol for the unconditionally-secure computation of the
(shared) product of two shared values [a] and [b]. The idea is, as in the
perfect case, to use an optimistic multiplication. The protocol BasicMult
takes a set M of (identified) malicious parties as input and outputs the
correct product given that no party in P \M actively cheated. In a
next step a probabilistic check is used to determine whether the product
computed in BasicMult is correct. This allows us to detect malicious
behavior. If cheating occurred, all involved sharings (from BasicMult) are
reconstructed to identify a cheater in P \M . These reconstructions violate
the privacy of the involved factors if the protocol is not used directly in
the actual circuit computation. Instead we use it to multiply two random
values and make use of circuit randomization from [Bea92] for actual
multiplication gates.

0: The parties in P take collectively [a], [b] and M as input.
1: ∀Sq : Sq ∩M 6= ∅ invoke ReconstructShare to reconstruct aq and bq.
2: a) Each party Pi ∈ P \M (locally) computes his designated

products and shares the sum ci =
∑

(p,q)∈I(i) apbq.
b) For each Pi ∈M DefaultShare(P,Z, S, ci) is invoked where

ci =
∑

(p,q)∈I(i) apbq.
3: The parties collectively output ([c1], . . . , [cn]) and [c] =

∑n

i=1[ci].

Protocol BasicMult(P,Z, S, [a], [b],M)

Lemma 46. Let M ⊆ Z∗ be a set of (identified) malicious parties and
assume that Z and S satisfy Q1(S,Z). Then BasicMult(P,Z,S, [a], [b],M)
securely computes sharings [c], ([c1], . . . , [cn]) except with error probabil-
ity of O(1

|F|n
4|S|). If no party in P \M actively cheats, it holds that

∀i ci =
∑

(p,q)∈IZ(i) apbq and c = ab. The protocol communicates at most
O(|S|n4 log |F|) bits and broadcasts at most O(|S|n4 log |F|) bits.

Proof. Correctness: The properties of the sharing protocol guarantee that
the outputs are valid sharings except with error probability of O(1

|F|n
4|S|).

The Q1(S,Z) property allows the parties to securely reconstruct shares
and grants that there exists a proper assignment of parties in P to the
local products. If none of the parties in P \M cheated, it holds for each

5.4. UNCONDITIONAL PROTOCOL 101

Pi that ci =
∑

(p,q)∈IZ(i) apbq (for parties in M DefaultShare is used on
reconstructed values).

Privacy: All reconstructed shares aq,bq are known to parties in M .
Complexity: Follow directly from the properties of the sharing scheme

(c.f. Lemmas 42, 43 and 44).

Detectable Random Triple Generation

The following unconditionally secure protocol takes a set M of malicious
parties as an additional input and computes a random multiplication
triple ([a], [b], [c]) where c = ab given that no party in P \M actively
cheats. Otherwise it outputs a set of malicious parties M ′ such that
M (M ′. This protocol uses a probabilistic check to detect cheating.
First the parties generate a shared random challenge [r] and a blinding [b′].
Then they use BasicMult to compute the sharings [c] = [a][b], [c′] = [a][b′]
and check whether [a](r[b] + [b′]) = (r[c] + [c′]). If this is the case the
multiplication triple ([a], [b], [c]) is output. Otherwise the parties identify
(at least) one cheater in P \M by reconstructing [a], [b], [b′], [c], [c′].

Lemma 47. If S and Z satisfy Q1(S,Z) and M ⊆ Z∗, the protocol
RandomTriple outputs either a random multiplication triple ([a], [b], [c]) or
set M ′ ⊆ Z∗ where M (M ′ except with error probability of O(1

|F| |S|n
4) +

1
|F| . No information is leaked to the adversary. RandomTriple communi-
cates at most O(|S|n4 log |F|) bits and broadcasts at most O(|S|n4 log |F|)
bits.

Proof. Correctness: In Step 2, the parties compute [c] and [c′]. Given
that no party in P \M actively cheated it holds that c = ab and c′ = ab′.
In this case [a](r[b] + [b′]) − r[c] − [c′], which is computed in Step 3,
is zero for all r and the parties reconstruct the random multiplication
triple ([a], [b], [c]). If c 6= ab the difference [a](r[b] + [b′]) − r[c] − [c′] is
non-zero except for at most one r and the parties go to Step 5 with
probability at least (1− 1

|F|) (assuming that no errors happen in sharing
and reconstruction of values). For at least one party Pi ∈ P \M it must
hold that rci + c′i 6=

∑
(p,q)∈I(i) r(apbq) + (apb′q). By opening all involved

sharing it is easy to find these parties. Thus it holds that M (M ′

and M ′ ⊆ Z∗. The overall error probability is composed of the error

102 CHAPTER 5. EFFICIENT GENERAL-ADVERSARY MPC

probability of the sharing scheme and the one of the random challenge
check in Step 3.

Privacy: Neither the protocol BasicMult nor the sharing scheme do
violate privacy (c.f. Lemma 46). The values e is statistically independent
of ([a], [b], [c]), as b′ acts as blinding. If no cheating occurred the value d
is always zero. If Step 5 is invoked, the reconstructed values are not used,
and privacy is met.

Communication: Follows from counting the number of messages sent
(c.f. Lemmas 42, 45 and 46).

0: The parties take the set M ⊆ P as input.
1: The parties generate random shared values [a], [b], [b′], [r] by

summing up shared random values (one from each party) for each
value.

2: Invoke BasicMult(P,Z, S, [a], [b],M) to compute the sharing [c] and
the vector ([c1], . . . , [cn]) and invoke BasicMult(P,Z, S, [a], [b′],M)
to compute the sharing [c′] and the vector ([c′1], . . . , [c′n]).

3: Reconstruct [r] and (locally) compute [e] = r[b] + [b′] and
reconstruct it to obtain e. Then [d] = e[a]− r[c]− [c′] is computed
(locally) and reconstructed.

4: If the value d is zero the parties output ([a], [b], [c]).
5: Otherwise reconstruct the sharings [a], [b], [b′], [c1], . . . , [cn], [c′1], . . . ,

[c′n]. The parties output
M ′ = M ∪ {Pi : rci + c′i 6=

∑
(p,q)∈I(i) r(apbq) + (apb′q)}.

Protocol RandomTriple(P,Z, S,M)

Multiplication with Circuit Randomization

The actual multiplication is based on circuit randomization [Bea92]. It
allows parties to compute the product [xy] of two shared values [x] and
[y] at the cost of two reconstructions given a random multiplication triple
([a], [b], [c]), where ab = c. The trick is to use that xy = ((x− a) + a)((y−
b)+b). By reconstructing d = x−a and e = y−b the parties can compute
[xy] as de+ d[b] + [a]e+ [c]. This does not violate the secrecy of [x] or [y]
as the random values [a] and [b] act as blinding.

5.4. UNCONDITIONAL PROTOCOL 103

0: The parties in P take collectively [x], [y] as input and set M := ∅.
1: Invoke RandomTriple(P,Z, S,M). If the protocol outputs a set M ′,

set M ←M ′ and repeat Step 1. Otherwise use the output as
random multiplication triple ([a], [b], [c]).

2: Compute and reconstruct [dx] = [x]− [a] and [dy] = [y]− [b].
Compute dxdy + dx[b] + dy[a] + [c] = [xy] to obtain a sharing of xy.

Protocol Multiplication(P,Z, S, [x], [y])

Lemma 48. Multiplication(P,Z,S, [x], [y]) is an unconditional secure
multiplication protocol given that S and Z satisfy Q1(S,Z). The protocol
has an error probability of O(1

|F| |S|n
5). The protocol communicates at

most O(|S|n5 log |F|) bits and broadcasts at most O(|S|n5 log |F|) bits.
Proof. Correctness: Assume that RandomTriple in Step 1 outputs a set
M ′, then we have that M (M ′ ⊆ P. Hence this step is repeated less
then n times and results in a random multiplication triple ([a], [b], [c])
(c.f. Lemma 47). The rest of the protocol is just the multiplication from
[Bea92].

Privacy: Follows from [Bea92] and Lemma 47.
Communication: Follows from counting the number of messages sent

(cf. Lemmas 45 and 47).

5.4.4 Unconditional MPC Protocol
The combination of the protocols Share, Reconstruct, and Multiplication
leads directly to the following unconditionally secure MPC protocol which
secure against adversaries satisfying Q2.

0: The parties take S := {P \ Z|Z ∈ Z} as sharing specification.
1: For every gate of C being evaluated do the following:

- Input gate for PD: Share(P,Z, S, PD, s) is invoked to share s
- Linear gate: The linear combination of the corresponding
shares is computed locally using the linearity of the sharing.

- Random gate: Each party shares a random value. The sum of
these values is used as output of the gate.

Protocol MPC(P,Z, C)

104 CHAPTER 5. EFFICIENT GENERAL-ADVERSARY MPC

- Multiplication gate: Multiplication(P,Z, S, [x], [y]) is used to
multiply [x] and [y].

- Output gate: The parties invoke Reconstruct(P,Z, S, [s], R) to
reconstruct s for parties in R.

Theorem 8. Let C be a circuit over F, where |F | ∈ Ω(2κ) and κ is a se-
curity parameter, and let Z be an adversary structure satisfying Q2(P,Z),
then MPC(P,Z, C) Z-securely evaluates C with an error probability of
2−κ|C||Z| · poly(n, κ). It communicates |C||Z| · poly(n, κ) bits and broad-
casts |C||Z| · poly(n, κ) bits within poly(n, κ) · d rounds, where d denotes
the multiplicative depth of C.

Proof. Correctness: It is easy to see that S := {P \Z|Z ∈ Z} is a sharing
specification satisfying Q1(S,Z). Hence by the properties of the sharing
scheme and Lemma 48 correctness and the bound on the error probability
follow.

Communication: The claimed communication and broadcast com-
plexity follow directly from the used subprotocols. Inspection of the
subprotocols also shows that it is possible to evaluate gates on the same
multiplicative depth of C in parallel. As each subprotocol only requires
poly(n, κ) rounds, the total number of rounds follows.

Note that broadcast channels can be (unconditionally secure) emulated
using the protocol from [PW96], which communicates poly(n, κ) bits in
order to broadcast one bit (with error probability of O(2−κ)). This results
in an MPC protocol with the same efficiency and error probability as
stated in Theorem 8.

The error probability of the presented protocol grows linearly in
the size of the adversary structure Z. As |Z| is typically exponential
in n, the security parameter κ must be chosen accordingly (such that
|Z| ∈ poly(κ)). This results in a huge security parameter and therefore
in inefficient protocols.

We therefore provide in the next section an extension of the previous
protocol in which the error probability only depends on log |Z|. In this
extended version of the protocol a reasonably large security parameter κ
is sufficient.

5.5. UNCONDITIONAL PROTOCOL FOR SUPERPOLY |Z| 105

5.5 Unconditional Protocol for Superpoly-
nomial |Z|

The protocol from the previous section has an error probability linear in
|Z|, which is problematic for large adversary structures Z. In this section,
we present modifications to the protocol that reduce the dependency to
log |Z|, which is in poly(n).

The reason for the error probability being dependent on |Z| is twofold:
Firstly, the protocol requires Ω(|Z|) probabilistic checks, in each of them
a cheating party might remain undetected with probability 2−κ. Secondly,
the protocol requires Ω(|Z|) broadcasts, each of them having a small
probability of failure.

5.5.1 Information Checking
In each invocation of Authenticate / Verify, a cheating attempt of a ma-
licious party Pi is not detected with probability of O(1

|F|) (c.f. Section
5.4.1). As these protocols are invoked Θ(|Z|) times per sharing, the
resulting error probability depends linearly on |Z|. To avoid this we use
local dispute control to deal with detected cheaters.

More formally, each party Pk locally maintains a list Lk of parties
whom he distrusts. At the beginning of the MPC protocol these lists are
empty. Protocol Authenticate is modified, such that Pj puts Pi on his list
Lj if the check in Step 4 fails. Once Pi ∈ Lj , Pj behaves in all future
invocations of the protocol as if the check in Step 4 failed independently
whether this is the case or not. Similarly Pk puts Pi on his list Lk if the
check in Step 5 fails. As soon as Pi ∈ Lk, Pk behaves in Step 5 as if
the corresponding check failed. Furthermore, in protocol Verify, Pk puts
Pj on his list Lk if the check in Step 2 failed. Again Pk behaves for all
Pj ∈ Lk as if the check failed independently whether this is the case or
not.

In both protocols the adversary has a chance of O(1
|F|) to cheat suc-

cessfully, but if he fails (with probability Ω(1− 1
|F|)) one corrupted party

Pi is put on the list Lk of an honest party Pk. From then on Pi is never
able to cheat in instances of both protocols when Pk takes part (in the
right position). This means that the adversary actually has at most
n2 attempts to cheat. Hence total error probability of arbitrary many

106 CHAPTER 5. EFFICIENT GENERAL-ADVERSARY MPC

instances of Verify and Authenticate is at most O(1
|F|n

2) and no longer
depends on Z.

Note that the parallel invocation of Authenticate, as it is used in Share,
requires special care. For example if in one of the parallel invocations of
Authenticate (with Pi and Pk) the consistency check fails Pk must assume
that all other parallel checks failed. Analogous modifications are made in
Verify and Multiplication.
Lemma 49. The modified Authenticate and Verify protocols have a total
error probability of O(1

|F|n
2) independent of the number of invocations.

5.5.2 Broadcast
Although broadcast is only needed in Share, the total number of broadcast
calls is in Θ(|Z|). If [PW96] is used, the resulting overall error probability
depends linearly on |Z|. To avoid this problem, the number of broadcast
calls must be reduced.

To reach this goal we use the fact that the Share protocol only has
constantly many rounds. In each round a party PS must broadcast Θ(|Z|)
many messages of size O(log |F|). Instead of broadcasting these messages
in parallel, PS sends their concatenation to the other parties, who then
check that they received the same message. If an inconsistency is detected
the protocol is repeated. To limit the number of repetitions we use the
concept of dispute control from [BH06] which prevents the malicious
parties from repetitive cheating. Dispute control is realized by a publicly
known dispute set Γ ⊆ P × P, a set of unordered pairs of parties. If
{Pi, Pj} ∈ Γ it means that there is a dispute between Pi and Pj and thus
at least one of them is corrupted. Note that from Pi’s view all parties in
{Pj |{Pi, Pj} ∈ Γ} are malicious and thus he no longer trust them. At the
beginning of the MPC protocol Γ is empty.

0: The party PS takes m ∈ {0, 1}w as input.
1: ∀{Pi, PS} 6∈ Γ PS sends m as mi to Pi.
2: ∀{Pi, Pj} 6∈ Γ Pi sends mi as mij to Pj .
3: ∀Pi if all received values are the same Pi is happy, otherwise

unhappy. Pi broadcasts using [PW96] his happy bit.

Protocol OptimisticBroadcast(P,Z, PS ,m)

5.5. UNCONDITIONAL PROTOCOL FOR SUPERPOLY |Z| 107

4: If all parties are happy, each Pi outputs the value he holds.
Otherwise, an unhappy party Pi (e.g. the one with the smallest
index) broadcasts j, j′, z, b where mji differs from mj′i at
bit-position z and b is the bit of mji at position z. Then PS , Pj , Pj′
broadcast their versions of the bit at position z. Using this
information the parties localize a dispute between two parties of
{Pi, PS , Pj , Pj′}. Then the protocol is repeated with updated Γ.

Lemma 50. The protocol OptimisticBroadcast(P,Z, PS ,m) achieves the
broadcast of a message m′ ∈ {0, 1}w. The protocol communicates at most
w · poly(n, κ) bits and broadcasts at most logw · poly(n, κ).

Proof. The properties of Γ guarantee that honest parties will exchange
in Step 2 their received messages from PS . So if all honest parties are
happy they all will output the same message m′. For an honest PS this
also ensures that m′ = m. If a party is unhappy, at least one party
misbehaved. The actions taken in Step 4 then ensure that the honest
parties will find at least one dispute. The protocol will terminate, as the
number of repetition is limited by n(n−1). As the broadcast of z requires
logw bits, the communication and broadcast complexities follow.

For a message of length Θ(|Z|) the above protocol only needs to
broadcast log |Z| · poly(n, κ) bits, hence the total number of broadcast
calls per invocation of Share is reduced to log |Z| · poly(n, κ).

Lemma 51. The modified Share protocol communicates |C||Z| ·poly(n, κ)
bits and broadcasts |C| log |Z| · poly(n, κ) bits.

5.5.3 Summary
The combination of the above extension results in the following Lemma:

Theorem 9. Let C be a circuit over F, where |F| ∈ Ω(2κ) and κ is
a security parameter, and let Z be an adversary structure satisfying
Q2(P,Z), then the modified protocol MPC(P,Z, C) Z-securely evaluates
C with an error probability of 2−κ|C| · poly(n, κ). It communicates |C||Z| ·
poly(n, κ) bits and broadcasts |C| log |Z| · poly(n, κ) bits. The number of
rounds is poly(n, κ) · d, where d denotes the multiplicative depth of C.

Proof. Follows directly from Theorem 8 and Lemmas 49 and 51.

108 CHAPTER 5. EFFICIENT GENERAL-ADVERSARY MPC

By replacing broadcast with the simulated one from [PW96], one gets
for |Z| ∈ O(2n) and |C| ∈ poly(κ) the following theorem.

Theorem 10. Let C be a circuit over F, where |F| ∈ Ω(2κ) and κ is a se-
curity parameter, and let Z be an adversary structure satisfying Q2(P,Z),
then MPC(P,Z, C) Z-securely evaluates C with an error probability of
2−κ · poly(n, κ). It communicates |Z| · poly(n, κ) bits.

5.6 Lower Bound on the Efficiency
The following theorem states that there exists a family of circuits and
Q2 adversary structures such that the length of unconditionally secure
protocols tolerating these adversaries grows exponentially in the number
of parties. This implies that the computational complexity of our protocol
from the previous section is optimal, as there exists no protocol with a
computational complexity in o(|Z|).

Theorem 11. [Hir01] Let C be the circuit which takes inputs from P1 and
P2 and outputs the product to P1. Then there exists a family Z2,Z3, . . .
of Q2 adversary structures for party sets P2,P3, . . . (|Pn| = n) such that
the length of the shortest unconditionally Zn-secure protocol for C grows
exponentially in n.

Bibliography

[Bd90] Jurjen N. Bos and Bert den Boer. Detection of disrupters in
the DC protocol. In Jean-Jacques Quisquater and Joos Van-
dewalle, editors, Advances in Cryptology – EUROCRYPT’89,
volume 434 of Lecture Notes in Computer Science, pages
320–327. Springer, Heidelberg, April 1990.

[Bea91] Donald Beaver. Secure multiparty protocols and zero-
knowledge proof systems tolerating a faulty minority. Journal
of Cryptology, 4(2):75–122, 1991.

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit
randomization. In Joan Feigenbaum, editor, Advances in
Cryptology – CRYPTO’91, volume 576 of Lecture Notes in
Computer Science, pages 420–432. Springer, Heidelberg, Au-
gust 1992.

[BFH+08] Zuzana Beerliová-Trubíniová, Matthias Fitzi, Martin Hirt,
Ueli M. Maurer, and Vassilis Zikas. MPC vs. SFE: Perfect
security in a unified corruption model. In Ran Canetti, editor,
TCC 2008: 5th Theory of Cryptography Conference, volume
4948 of Lecture Notes in Computer Science, pages 231–250.
Springer, Heidelberg, March 2008.

[BGP89] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. To-
wards optimal distributed consensus (extended abstract). In
30th Annual Symposium on Foundations of Computer Sci-
ence, pages 410–415. IEEE Computer Society Press, Octo-
ber / November 1989.

110 BIBLIOGRAPHY

[BGT13] Elette Boyle, Shafi Goldwasser, and Stefano Tessaro. Com-
munication locality in secure multi-party computation - how
to run sublinear algorithms in a distributed setting. In Amit
Sahai, editor, TCC 2013: 10th Theory of Cryptography Con-
ference, volume 7785 of Lecture Notes in Computer Science,
pages 356–376. Springer, Heidelberg, March 2013.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Com-
pleteness theorems for non-cryptographic fault-tolerant dis-
tributed computation (extended abstract). In 20th Annual
ACM Symposium on Theory of Computing, pages 1–10. ACM
Press, May 1988.

[BH06] Zuzana Beerliová-Trubíniová and Martin Hirt. Efficient multi-
party computation with dispute control. In Shai Halevi and
Tal Rabin, editors, TCC 2006: 3rd Theory of Cryptogra-
phy Conference, volume 3876 of Lecture Notes in Computer
Science, pages 305–328. Springer, Heidelberg, March 2006.

[Bon98] Dan Boneh. Algorithmic Number Theory: Third Interna-
tional Symposiun, ANTS-III Portland, Oregon, USA, June
21–25, 1998 Proceedings, chapter The Decision Diffie-Hellman
problem, pages 48–63. Springer, Heidelberg, 1998.

[Can98] Ran Canetti. Security and composition of multi-party cryp-
tographic protocols. Cryptology ePrint Archive, Report
1998/018, 1998. http://eprint.iacr.org/1998/018.

[Can01] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In 42nd Annual Sym-
posium on Foundations of Computer Science, pages 136–145.
IEEE Computer Society Press, October 2001.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multi-
party unconditionally secure protocols (extended abstract).
In 20th Annual ACM Symposium on Theory of Computing,
pages 11–19. ACM Press, May 1988.

[CCG+15] Nishanth Chandran, Wutichai Chongchitmate, Juan A. Garay,
Shafi Goldwasser, Rafail Ostrovsky, and Vassilis Zikas. The

http://eprint.iacr.org/1998/018

BIBLIOGRAPHY 111

hidden graph model: Communication locality and optimal
resiliency with adaptive faults. In Tim Roughgarden, editor,
ITCS 2015: 6th Innovations in Theoretical Computer Sci-
ence, pages 153–162. Association for Computing Machinery,
January 2015.

[CDD+99] Ronald Cramer, Ivan Damgård, Stefan Dziembowski, Martin
Hirt, and Tal Rabin. Efficient multiparty computations secure
against an adaptive adversary. In Jacques Stern, editor,
Advances in Cryptology – EUROCRYPT’99, volume 1592 of
Lecture Notes in Computer Science, pages 311–326. Springer,
Heidelberg, May 1999.

[CDN15] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Se-
cure Multiparty Computation and Secret Sharing. Cambridge
University Press, 1st edition, 2015.

[CFF+05] Jeffrey Considine, Matthias Fitzi, Matthew K. Franklin,
Leonid A. Levin, Ueli M. Maurer, and David Metcalf. Byzan-
tine agreement given partial broadcast. Journal of Cryptology,
18(3):191–217, July 2005.

[CGO15] Nishanth Chandran, Juan A. Garay, and Rafail Ostrovsky.
Almost-everywhere secure computation with edge corruptions.
Journal of Cryptology, 28(4):745–768, October 2015.

[Cha81] David Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. Commun. ACM, 24(2):84 – 90,
February 1981.

[Cha88] David Chaum. The dining cryptographers problem: Un-
conditional sender and recipient untraceability. Journal of
Cryptology, 1(1):65–75, 1988.

[Cha03] David Chaum. Untraceable electronic mail, return addresses
and digital pseudonyms. In Dimitris Gritzalis, editor, Se-
cure Electronic Voting, volume 7 of Advances in Information
Security, pages 211–219. Springer, Heidelberg, 2003.

112 BIBLIOGRAPHY

[DDWY90] Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung.
Perfectly secure message transmission. In 31st Annual Sym-
posium on Foundations of Computer Science, pages 36–45.
IEEE Computer Society Press, October 1990.

[DJ01] Ivan Damgård and Mats Jurik. A generalisation, a sim-
plification and some applications of Paillier’s probabilistic
public-key system. In Kwangjo Kim, editor, PKC 2001: 4th
International Workshop on Theory and Practice in Public
Key Cryptography, volume 1992 of Lecture Notes in Computer
Science, pages 119–136. Springer, Heidelberg, February 2001.

[ElG84] Taher ElGamal. A public key cryptosystem and a signa-
ture scheme based on discrete logarithms. In G. R. Blak-
ley and David Chaum, editors, Advances in Cryptology –
CRYPTO’84, volume 196 of Lecture Notes in Computer Sci-
ence, pages 10–18. Springer, Heidelberg, August 1984.

[FFGV07] Matthias Fitzi, Matthew K. Franklin, Juan A. Garay, and
S. Harsha Vardhan. Towards optimal and efficient perfectly
secure message transmission. In Salil P. Vadhan, editor,
TCC 2007: 4th Theory of Cryptography Conference, volume
4392 of Lecture Notes in Computer Science, pages 311–322.
Springer, Heidelberg, February 2007.

[FGH+02] Matthias Fitzi, Daniel Gottesman, Martin Hirt, Thomas
Holenstein, and Adam Smith. Detectable Byzantine agree-
ment secure against faulty majorities. In Aleta Ricciardi,
editor, 21st ACM Symposium Annual on Principles of Dis-
tributed Computing, pages 118–126. Association for Comput-
ing Machinery, July 2002.

[FLM85] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt.
Easy impossibility proofs for distributed consensus problems.
In Michael A. Malcolm and H. Raymond Strong, editors, 4th
ACM Symposium Annual on Principles of Distributed Com-
puting, pages 59–70. Association for Computing Machinery,
August 1985.

BIBLIOGRAPHY 113

[FM98] Matthias Fitzi and Ueli Maurer. Efficient Byzantine agree-
ment secure against general adversaries. In DISC, volume
1499 of Lecture Notes in Computer Science, pages 134–148.
Springer, Heidelberg, September 1998.

[FM00] Matthias Fitzi and Ueli M. Maurer. From partial consistency
to global broadcast. In 32nd Annual ACM Symposium on
Theory of Computing, pages 494–503. ACM Press, May 2000.

[GGOR14] Juan A. Garay, Clinton Givens, Rafail Ostrovsky, and Pavel
Raykov. Fast and unconditionally secure anonymous channel.
In Magnús M. Halldórsson and Shlomi Dolev, editors, 33rd
ACM Symposium Annual on Principles of Distributed Com-
puting, pages 313–321. Association for Computing Machinery,
July 2014.

[GJ04] Philippe Golle and Ari Juels. Dining cryptographers revisited.
In Christian Cachin and Jan Camenisch, editors, Advances
in Cryptology – EUROCRYPT 2004, volume 3027 of Lec-
ture Notes in Computer Science, pages 456–473. Springer,
Heidelberg, May 2004.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How
to play any mental game or A completeness theorem for
protocols with honest majority. In Alfred Aho, editor, 19th
Annual ACM Symposium on Theory of Computing, pages
218–229. ACM Press, May 1987.

[GO08] Juan A. Garay and Rafail Ostrovsky. Almost-everywhere
secure computation. In Nigel P. Smart, editor, Advances
in Cryptology – EUROCRYPT 2008, volume 4965 of Lec-
ture Notes in Computer Science, pages 307–323. Springer,
Heidelberg, April 2008.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume
1, Basic Techniques. Cambridge University Press, 2001.

[GY89] Ronald L. Graham and Andrew Chi-Chih Yao. On the im-
probability of reaching Byzantine agreements (preliminary
version). In 21st Annual ACM Symposium on Theory of
Computing, pages 467–478. ACM Press, May 1989.

114 BIBLIOGRAPHY

[Hir01] Martin Hirt. Multi-Party Computation: Efficient Protocols,
General Adversaries, and Voting. PhD thesis, ETH Zurich,
September 2001. Reprint as vol. 3 of ETH Series in In-
formation Security and Cryptography, ISBN 3-89649-747-2,
Hartung-Gorre Verlag, Konstanz, 2001.

[HJ07] Markus Hinkelmann and Andreas Jakoby. Communications
in unknown networks: Preserving the secret of topology. The-
oretical Computer Science, 384(2-3):184–200, 2007.

[HM97] Martin Hirt and Ueli M. Maurer. Complete characterization
of adversaries tolerable in secure multi-party computation
(extended abstract). In James E. Burns and Hagit Attiya,
editors, 16th ACM Symposium Annual on Principles of Dis-
tributed Computing, pages 25–34. Association for Computing
Machinery, August 1997.

[HM00] Martin Hirt and Ueli M. Maurer. Player simulation and gen-
eral adversary structures in perfect multiparty computation.
Journal of Cryptology, 13(1):31–60, 2000. Extended abstract
in Proc. 16th of ACM PODC ’97.

[HMR14] Martin Hirt, Ueli Maurer, and Pavel Raykov. Broadcast am-
plification. In Yehuda Lindell, editor, TCC 2014: 11th Theory
of Cryptography Conference, volume 8349 of Lecture Notes
in Computer Science, pages 419–439. Springer, Heidelberg,
February 2014.

[HMTZ16] Martin Hirt, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas.
Network-hiding communication and applications to multi-
party protocols. In Matthew Robshaw and Jonathan Katz,
editors, Advances in Cryptology – CRYPTO 2016, Part II,
volume 9815 of Lecture Notes in Computer Science, pages
335–365. Springer, Heidelberg, August 2016.

[HMZ08] Martin Hirt, Ueli M. Maurer, and Vassilis Zikas. MPC
vs. SFE: Unconditional and computational security. In
Josef Pieprzyk, editor, Advances in Cryptology – ASI-
ACRYPT 2008, volume 5350 of Lecture Notes in Computer
Science, pages 1–18. Springer, Heidelberg, December 2008.

BIBLIOGRAPHY 115

[HT13] Martin Hirt and Daniel Tschudi. Efficient general-adversary
multi-party computation. In Kazue Sako and Palash Sarkar,
editors, Advances in Cryptology – ASIACRYPT 2013, Part II,
volume 8270 of Lecture Notes in Computer Science, pages
181–200. Springer, Heidelberg, December 2013.

[JMS12] Alexander Jaffe, Thomas Moscibroda, and Siddhartha Sen.
On the price of equivocation in Byzantine agreement. In
Darek Kowalski and Alessandro Panconesi, editors, 31st ACM
Symposium Annual on Principles of Distributed Computing,
pages 309–318. Association for Computing Machinery, July
2012.

[KNS16] Anna Krasnova, Moritz Neikes, and Peter Schwabe. Foot-
print scheduling for dining-cryptographer networks. In Jens
Grossklags and Bart Preneel, editors, FC 2016: 20th Inter-
national Conference on Financial Cryptography and Data
Security, volume 9603 of Lecture Notes in Computer Science,
pages 385–402. Springer, Heidelberg, February 2016.

[KS08] Kaoru Kurosawa and Kazuhiro Suzuki. Truly efficient 2-round
perfectly secure message transmission scheme. In Nigel P.
Smart, editor, Advances in Cryptology – EUROCRYPT 2008,
volume 4965 of Lecture Notes in Computer Science, pages
324–340. Springer, Heidelberg, April 2008.

[KS10] Valerie King and Jared Saia. Breaking the O(n2) bit barrier:
scalable Byzantine agreement with an adaptive adversary. In
Andréa W. Richa and Rachid Guerraoui, editors, 29th ACM
Symposium Annual on Principles of Distributed Computing,
pages 420–429. Association for Computing Machinery, July
2010.

[KSSV06a] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee.
Scalable leader election. In 17th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 990–999. ACM-SIAM,
January 2006.

[KSSV06b] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee.
Towards secure and scalable computation in peer-to-peer

116 BIBLIOGRAPHY

networks. In 47th Annual Symposium on Foundations of
Computer Science, pages 87–98. IEEE Computer Society
Press, October 2006.

[KY84] Anna Rochelle Karlin and Andrew Chi-Chih Yao. Prob-
abilistic lower bounds for the Byzantine generals problem.
unpublished manuscript, 1984.

[Lam83] Leslie Lamport. The weak Byzantine generals problem. Jour-
nal of the ACM, 30(3):668–676, July 1983.

[LMT16] Julian Loss, Ueli Maurer, and Daniel Tschudi. Hierarchy of
three-party consistency specifications. In 2016 IEEE Inter-
national Symposium on Information Theory (ISIT), pages
3048–3052. IEEE, July 2016.

[LMT17] Julian Loss, Ueli Maurer, and Daniel Tschudi. Strong separa-
tions between broadcast and authenticated channels. unpub-
lished manuscript, 2017.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The
Byzantine generals problem. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 4(3):382–401, July
1982.

[Mau03] Ueli M. Maurer. Secure multi-party computation made sim-
ple (invited talk). In Stelvio Cimato, Clemente Galdi, and
Giuseppe Persiano, editors, SCN 02: 3rd International Con-
ference on Security in Communication Networks, volume 2576
of Lecture Notes in Computer Science, pages 14–28. Springer,
Heidelberg, September 2003.

[Mau04] Ueli Maurer. Towards a theory of consistency primitives.
In Rachid Guerraoui, editor, International Symposium on
Distributed Computing — DISC 2004, volume 3274 of Lec-
ture Notes in Computer Science, pages 379–389. Springer,
Heidelberg, October 2004.

[Mau11] Ueli Maurer. Constructive cryptography – a new paradigm
for security definitions and proofs. In S. Moedersheim and
C. Palamidessi, editors, Theory of Security and Applications

BIBLIOGRAPHY 117

(TOSCA 2011), volume 6993 of Lecture Notes in Computer
Science, pages 33–56. Springer, Heidelberg, April 2011.

[MOR15] Tal Moran, Ilan Orlov, and Silas Richelson. Topology-hiding
computation. In Yevgeniy Dodis and Jesper Buus Nielsen,
editors, TCC 2015: 12th Theory of Cryptography Conference,
Part I, volume 9014 of Lecture Notes in Computer Science,
pages 159–181. Springer, Heidelberg, March 2015.

[MR11] Ueli Maurer and Renato Renner. Abstract cryptography.
In Bernard Chazelle, editor, ICS 2011: 2nd Innovations in
Computer Science, pages 1–21. Tsinghua University Press,
January 2011.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In Jacques Stern, editor, Advances
in Cryptology – EUROCRYPT’99, volume 1592 of Lecture
Notes in Computer Science, pages 223–238. Springer, Heidel-
berg, May 1999.

[Pas04] Rafael Pass. Bounded-concurrent secure multi-party compu-
tation with a dishonest majority. In László Babai, editor,
36th Annual ACM Symposium on Theory of Computing, pages
232–241. ACM Press, June 2004.

[PSR03] B. Prabhu, K. Srinathan, and C. Pandu Rangan. Trading
players for efficiency in unconditional multiparty computation.
In Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano,
editors, SCN 02: 3rd International Conference on Security
in Communication Networks, volume 2576 of Lecture Notes
in Computer Science, pages 342–353. Springer, Heidelberg,
September 2003.

[PW96] Birgit Pfitzmann and Michael Waidner. Information-theoretic
pseudosignatures and Byzantine agreement for t ≥ n/3. Re-
search report, IBM Research, 1996.

[Ray15] Pavel Raykov. Broadcast from minicast secure against general
adversaries. In Magnús M. Halldórsson, Kazuo Iwama, Naoki
Kobayashi, and Bettina Speckmann, editors, ICALP 2015:

118 BIBLIOGRAPHY

42nd International Colloquium on Automata, Languages and
Programming, Part II, volume 9135 of Lecture Notes in Com-
puter Science, pages 701–712. Springer, Heidelberg, July 2015.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing
and multiparty protocols with honest majority (extended
abstract). In 21st Annual ACM Symposium on Theory of
Computing, pages 73–85. ACM Press, May 1989.

[RMS+04] D. V. S. Ravikant, Venkitasubramaniam Muthuramakrishnan,
V. Srikanth, K. Srinathan, and C. Pandu Rangan. On Byzan-
tine agreement over (2,3)-uniform hypergraphs. In Rachid
Guerraoui, editor, International Symposium on Distributed
Computing — DISC 2004, volume 3274 of Lecture Notes
in Computer Science, pages 450–464. Springer, Heidelberg,
October 2004.

[RR98] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity
for web transactions. ACM Trans. Inf. Syst. Secur., 1(1):66–
92, November 1998.

[SGR97] Paul F. Syverson, David M. Goldschlag, and Michael G. Reed.
Anonymous connections and onion routing. In 1997 IEEE
Symposium on Security and Privacy, May 4-7, 1997, Oakland,
CA, USA, pages 44–54. IEEE Computer Society, 1997.

[SNR04] K. Srinathan, Arvind Narayanan, and C. Pandu Rangan.
Optimal perfectly secure message transmission. In Matthew
Franklin, editor, Advances in Cryptology – CRYPTO 2004,
volume 3152 of Lecture Notes in Computer Science, pages
545–561. Springer, Heidelberg, August 2004.

[UKBM11] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron
Marlow. The anatomy of the facebook social graph. CoRR,
abs/1111.4503, 2011.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations
(extended abstract). In 23rd Annual Symposium on Founda-
tions of Computer Science, pages 160–164. IEEE Computer
Society Press, November 1982.

Curriculum Vitae

Daniel Tschudi
Citizen of Glarus GL and Zürich ZH, Switzerland.
Born on 15 May 1988, in Horgen ZH, Switzerland.

Doctoral Studies 09/2012 - 01/2018

ETH Zürich, Department of Computer Science
Thesis: Selected Topics in Secure Multi-Party Computation
Advisor: Prof. Dr Ueli Maurer
Co-examiners: Prof. Dr. Jesper Buus Nielsen, Dr. Martin Hirt
Degree: Doctor of Sciences (Dr. sc. ETH)

Undergraduate Studies 09/2007 - 09/2012

ETH Zürich, Department of Mathematics
Thesis: Complexity of Multi-Party Computation Secure against General
Adversaries
Degree: Master of Science ETH in Mathematics

High School 08/2001 - 08/2012

School: Kantonsschule Freudenberg, Zürich, Switzerland

	Acknowledgments
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Secure Multi-Party Computation
	Multi-Party Computation Models
	History of MPC

	Contributions
	Topology-Hiding Communication
	Classification of Consistency Specification
	Efficient General Adversary MPC

	Preliminaries
	General Notation
	Cryptographic Primitives
	Broadcast Channel
	Public-Key Encryption
	Threshold Public-Key Encryption

	Hardness Assumptions
	Decisional Diffie-Hellman Assumption

	Topology-Hiding Communication
	Introduction
	Related Literature
	Contributions
	Comparison with [MOR15]
	Preliminaries and Notation
	Outline

	Topology-Hiding Security Definition
	MHT-PKE with Reversible Randomization
	Multi-Homomorphic Threshold Encryption
	Reversible Randomization
	RR-MHT-PKE based on DDH

	Topology-Hiding Communication
	Topology-Hiding Threshold Encryption
	Multi-Party Boolean OR
	Topology-Hiding Broadcast

	Applications
	Topology-Hiding Secure MPC
	Anonymous Broadcast

	Classes of Consistency Specifications
	Introduction
	Contribution and Outline
	Related Work

	Preliminaries
	Consistency Specifications
	Protocols and Constructions

	Impossibility Proofs
	Broadcast Impossibility
	Strong Broadcast Impossibility

	Classification of Specifications
	Classification of Single-Input Specifications

	Strong Separation Results
	XOR-Cast
	Weak Broadcast

	Discussion and Open Problems

	Efficient General-Adversary MPC
	Introduction
	Contributions

	Preliminaries
	Perfect Protocol
	Secret Sharing
	Multiplication
	MPC Protocol

	Unconditional Protocol
	Information Checking
	Unconditional Secret Sharing
	Multiplication
	Unconditional MPC Protocol

	Unconditional Protocol for Superpoly |Z|
	Information Checking
	Broadcast
	Summary

	Lower Bound on the Efficiency

	Bibliography
	Curriculum Vitae

